ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
HUANGMinghua, . A limit analysis of the ultimate pullout capacity of a shallow horizontal strip anchor plate embedded in slope[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 116-116. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.16
Citation: HUANGMinghua, . A limit analysis of the ultimate pullout capacity of a shallow horizontal strip anchor plate embedded in slope[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 116-116. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.16

A limit analysis of the ultimate pullout capacity of a shallow horizontal strip anchor plate embedded in slope

More Information
  • Received Date: June 21, 2018
  • Revised Date: August 08, 2018
  • Aiming at calculating the ultimate pullout capacity of a shallow horizontal strip anchor plate embedded in complicated topographical regions, e.g., mountainous areas, a kinematic admissible velocity field of the curved failure mechanism is constructed for the shallow horizontal strip anchor plate embedded in slope, based on the upper bound limit analysis theorem, the nonlinear Mohr-Coulomb failure criterion as well as the associated flow rules. The ultimate pullout force and failure mechanism are deduced using the variation minimum principle. Influences of the inclination angle and embedded depth on the ultimate pullout force are discussed in detail. The results show that the ultimate pullout force of the anchor plate decreases with the increasing inclination angle and the failure planes of the above ground are no longer symmetrical with an obvious shifting to the down side of the slope. Along with the increasing embedded depth, the ultimate pullout force of the anchor plate increases with a larger failure scope of the above ground. The inclination angle has a greater impact on the ultimate pullout force of the anchor plate with a smaller embedded depth. This effect should be taken into account for reasonably characterizing the ultimate bearing feature of a shallow horizontal strip anchor plate embedded in slope.
  • [1]
    [1]何思明. 抗拔锚板基础承载力研究[J]. 地下空间,2002, 22(2): 145-148.

    [HE S M. Research on pullout capacity of anchor plate [J]. Underground Space, 2002, 22(2): 145-148.(in Chinese)]
    [2]
    [2]王洪涛,李术才,王琦,等. 非线性破坏准则下水平浅埋条形锚板抗拔承载力的极限分析[J]. 工程力学,2014, 31(2): 131-138.

    [WANG H T, LI S C, WANG Q, et al. Limit analysis of ultimate pullout capacity of shallow horizontal strip anchor plate based on nonlinear failure criterion [J]. Engineering Mechanics, 2014, 31(2): 131-138.(in Chinese)]
    [3]
    [3]余生兵,黄茂松. 基于组合块体集的浅埋条形锚板上限分析[J]. 岩石力学与工程学报,2011, 30(5): 1049-1056.

    [YU S B,HUANG M S. Upper bound analysis of horizontally embedded anchors based on block set mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5): 1049-1056.(in Chinese)]
    [4]
    [4]茜平一,刘祖德,刘一亮. 浅埋斜拔锚板板周土体的变形破坏特征[J]. 岩土工程学报,1992, 14(1): 62-66.

    [QIAN P Y, LIU Z D, LIU Y L. Distortion and failure characteristics of shallow buried inclined anchors[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62-66.(in Chinese)]
    [5]
    [5]胡伟,刘顺凯,邹贵华,等. 竖向条形锚定板水平拉拔极限承载力统一理论解研究[J]. 岩土工程学报, 2018, 40(2): 296-304.

    [HU W, LIU S K, ZOU G H, et al. Unified theoretical solution for ultimate bearing capacity of vertical strip anchor [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 296-304.(in Chinese)]
    [6]
    [6]许华青,卢伟. 粉土中锚板抗拔模型试验研究[J]. 建筑工程技术与设计, 2017(28): 1440-1450.

    [XU H Q, LU W. Uplift test study on strip anchor in silt soil [J]. Architectural Engineering Technology and Besign, 2017(28): 1440-1450.(in Chinese)]
    [7]
    [7]KUMAR J. Uplift resistance of strip and circular anchors in a two layered sand [J]. Journal of the Japanese Geotechnical Society of Soils and Foundations, 2003, 43(1): 101-107.
    [8]
    [8]KUMAR J, KOUZER K M. Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements [J]. Canadian Geotechnical Journal, 2008, 45(5): 698-704.
    [9]
    [9]黄茂松,余生兵.基于块体集上限法的砂土中条形锚板抗拔承载力分析[J]. 岩土工程学报,2013, 35(2): 201-207.

    [HUANG M S, YU S B. Pull-out capacity of strip anchor plate in sand based on block set mechanism [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2): 201-207.(in Chinese)]
    [10]
    [10]赵炼恒,李亮,杨小礼,等. 非线性破坏准则下法向受力条形浅锚抗拔力上限计算方法[J]. 中南大学学报(自然科学版),2009, 40(5): 1444-1450.

    [ZHAO L H, LI L, YANG X L, et al. Calculating method of upper bound for ultimate pullout capacity of Vertically loaded strip plate anchors based on nonlinear Mohr-Coulomb failure criterion[J]. Journal of Central South University (Science and technology), 2009, 40(5): 1444-1450.(in Chinese)]
    [11]
    [11]张晓曦,苏谦. 倾斜荷载下条形锚板破裂面与极限抗拔承载力[J]. 地下空间与工程学报,2014, 10(1): 122-127.

    [HUANG M H, HU Q, HUANG Y J, et al. Upper bound analysis on pullout capacity of shallow horizontal strip anchor plate embedded in non-homogeneous soils [J]. Hydrogeology & Engineering Geology, 2017, 44(6): 37-43.(in Chinese)]
    [12]
    [13]MERIFIELD R S, LYAMIN A V, SLOAN S W. Stability of inclined strip anchors in purely cohesive soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(6): 792-799.
    [13]
    [14]MERIFIELD R S, SLOAN S W. The ultimate pullout capacity of anchors in frictional soils [J]. Canadian Geotechnical Journal, 2006, 43(8): 852-868.
    [14]
    [15]FRALDI M, GUARRACINO F, Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(4): 665-673.
    [15]
    [16]谭亦高,左仕,胡世红,等. 三维圆形浅埋锚板极限抗拔力非线性上限解析[J]. 铁道科学与工程学报,2017, 14(6): 1167-1173.

    [TAN Y G, ZUO S, HU S H, et al. Study on the ultimate pullout capacity of 3-D shallow circle plate anchors [J]. Journal of Railway Science and Engineering, 2017, 14(6): 1167-1173.(in Chinese)]
    [16]
    [17]ZHANG X J, CHEN W F. Stability analysis of slopes with general nonlinear failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33-50.
    [17]
    [18]DRESCHER A, CHRISTOPOULOS C. Limit analysis slope stability with nonlinear yield condition [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341-345.
    [18]
    [19]胡卫东,谭建辉,曾律弦,等. 变形协调条件下非线性破坏准则的加筋土坡临界高度上限解[J]. 水文地质工程地质,2018, 45(4): 45-51.

    [HU W D, TAN J H, ZENG L X, et al. Upper bound solution of critical heights of reinforced soil slope based on the nonlinear failure criterion and compatibility of deformation [J]. Hydrogeology & Engineering Geology, 2018, 45(4): 45-51.(in Chinese)]
    [19]
    [20]曹卫华,郭正. 最优化技术方法及MATLAB的实现[M]. 北京:化学工业出版社, 2005: 58-110.

    [CAO W H, GUO Z. Optimization technique and its realization in MATLAB software[M]. Beijing: Chemical Industry Press, 2005: 58-110.(in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 胡伟,张翰林,孟建伟,刘顺凯,聂志红. 砂土中倾斜条形锚板法向拉拔承载特性研究. 岩土工程学报. 2023(07): 1451-1460 .
    2. 董小卫,刘锋. 锚板形状对极限抗拔力影响的有限元分析及简化计算公式. 国防交通工程与技术. 2020(02): 9-13 .
    3. 赵偲聪. 基于离散元方法的锚板形状对极限抗拔力影响研究. 土工基础. 2020(02): 215-218 .
    4. 郭京平. 一种可考虑形状效应的浅埋板锚极限抗拔力计算方法. 河北工业科技. 2020(03): 159-163 .

    Other cited types(4)

Catalog

    Article views (898) PDF downloads (628) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return