ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
ZHANGZhenfei, . An experimental study of water infiltration and hydraulic conductivity of the compacted loess[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 97-104. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.13
Citation: ZHANGZhenfei, . An experimental study of water infiltration and hydraulic conductivity of the compacted loess[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 97-104. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.13

An experimental study of water infiltration and hydraulic conductivity of the compacted loess

More Information
  • Received Date: March 29, 2019
  • Revised Date: July 07, 2019
  • In order to study the water vertical infiltration and the unsaturated hydraulic conductivity function of the compacted loess, two groups of infiltration tests are conducted on the unsaturated compacted loess columns in the laboratory. In the constant-water head infiltration tests, both the cumulative infiltration and the wetting front distance are in a good power function relationship with time. A linear correlation exists between the cumulative infiltration and the wetting front distance. The infiltration rate, which is inversely proportional to the wetting front distance, decreases rapidly with time after the initial infiltration and finally reaches a steady seepage. In the rainfall infiltration tests, the van Genuchten and Fredlund-Xing equations are used to model the soil-water characteristic curve (SWCC) for each soil. Both the models capture the curve reasonably well over the entire range of the measured suction. The unsaturated hydraulic conductivity calculated using the instantaneous profile method has an exponential relation to the volumetric water content. Meanwhile, the van Genuchten and the Fredlund statistical modeling formalism are used to predict the hydraulic conductivity function, respectively. By comparison, the predicted values of the van Genuchten hydraulic conductivity model are much closer to the experimental values.
  • [1]
    [1]刘祖典.黄土力学与工程[M].西安: 陕西科学技术出版社, 1997: 58-61.

    [LIU Z D. Mechanics and engineering of loess[M]. Xi’an: Shaanxi Science and Technology Press, 1997:58-61. (in Chinese)]
    [2]
    [2]PHILIP J R. The theory of infiltration: 1. The infiltration equation and its solution[J]. Soil Science, 1957, 83(5): 345-357.
    [3]
    [3]蒋定生,黄国俊.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4): 299-305.

    [JIANG D S, HUANG G J. Study on the filtration rate of soils on the loess plateau of China[J]. Acta Pedologica Sinica, 1986, 23(4): 299-305. (in Chinese)]
    [4]
    [4]王全九,来剑斌,李毅.Green-Ampt模型与Philip入渗模型的对比分析[J].农业工程学报,2002,18(2): 13-16.

    [WANG Q J, LAI J B, LI Y. Comparison of Green-Ampt model with Philip infiltration model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 13-16. (in Chinese)]
    [5]
    [5]王全九,王文焰,吕殿青,等.水平一维土壤水分入渗特性分析[J].水利学报,2000,31(6): 34-38.

    [WANG Q J, WANG W Y, LYU D Q, et al. Theoretical analysis of horizontal one dimensional unsteady soil water transfer[J]. Journal of Hydraulic Engineering, 2000, 31(6): 34-38. (in Chinese)]
    [6]
    [6]王文焰,汪志荣,王全九,等.黄土中Green-Ampt入渗模型的改进与验证[J].水利学报,2003,34(5): 30-34.

    [WANG W Y, WANG Z R, WANG Q J, et al. Improvement and evaluation of the Green-Ampt model in loess soil[J]. Journal of Hydraulic Engineering, 2003, 34(5): 30-34. (in Chinese)]
    [7]
    [7]王念秦,庞琦,韩波,等.原状非饱和离石黄土向上渗流规律试验研究[J].水文地质工程地质,2015,42(1): 112-117.

    [WANG N Q, PANG Q, HAN B, et al. Experimental study of the upward seepage law of the intact unsaturated Lishi loess[J]. Hydrogeology & Engineering Geology, 2015, 42(1): 112-117. (in Chinese)]
    [8]
    [8]黄雪峰,陈正汉,哈双,等.大厚度自重湿陷性黄土场地湿陷变形特征的大型现场浸水试验研究[J].岩土工程学报,2006,28(3): 382-389.

    [HUANG X F, CHEN Z H, HA S, et al. Large area field immersion tests on characteristics of deformation of self weight collapse loess under overburden pressure[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 382-389. (in Chinese)]
    [9]
    [9]安鹏,张爱军,邢义川,等.伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J].岩土力学,2017,38(2): 557-564.

    [AN P, ZHANG A J, XING Y C, et al. Analysis of soak infiltration and deformation characteristics for thick collapsible loess in Ili region[J]. Rock and Soil Mechanics, 2017, 38(2): 557-564. (in Chinese)]
    [10]
    [10]FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. FREDLUND D G, RAHARDJO H. Soil mechanics for unsaturated soils[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1993. DOI: 10.1002/9780470172759
    [11]
    [11]RICHARDS S J, WEEKS L V. Capillary conductivity values from moisture yield and tension measurements on soil columns1[J]. Soil Science Society of America Journal, 1953, 17(3): 206-209.
    [12]
    [12]HAMILTON J M, DANIEL D E, OLSON R E. Measurement of hydraulic conductivity of partially saturated soils[M]//Permeability and Groundwater Contaminant Transport. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, : 182-182-15. DOI: 10.1520/stp28324s
    [13]
    [13]王红,李同录,付昱凯.利用瞬态剖面法测定非饱和黄土的渗透性曲线[J].水利学报,2014,45(8): 997-1003.

    [WANG H, LI T L, FU Y K. Determining permeability function of unsaturated loess by using instantaneous profile method[J]. Journal of Hydraulic Engineering, 2014, 45(8): 997-1003. (in Chinese)]
    [14]
    [14]陶高梁, 吴小康, 甘世朝,等. 不同初始孔隙比下非饱和黏土渗透性试验研究及模型预测[J]. 岩土力学, 2019, 40(5): 1761-1770.

    [TAO G L, WU X K, GAN S C, et al. Experimental study and model prediction of permeability coefficient of unsaturated clay with different initial void ratios[J]. Rock and Soil Mechanics, 2019, 40(5): 1761-1770.(in Chinese)]
    [15]
    [15]文杰,韩金良,姚磊华,等.原位非饱和黄土渗透系数研究[J].岩土力学,2015,36(9): 2599-2606. [WEN J, HAN J L, YAO L H, et al. Study of hydraulic conductivity of unsaturated loess in-situ conditions[J]. Rock and Soil Mechanics, 2015, 36(9): 2599-2606.(in Chinese)]
    [16]
    [16]VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils [J]. Soil Science Society of America Journal, 1980, 44(5): 892-898.
    [17]
    [17]FREDLUND D G, XING A Q, HUANG S Y. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 533-546.
    [18]
    [18]LU N, LIKOS W J. Unsaturated soil mechanics[M]. New Jersey: John Wiley & Sons, 2004: 506-529.
    [19]
    [19]叶为民,钱丽鑫,白云,等.由土-水特征曲线预测上海非饱和软土渗透系数[J].岩土工程学报,2005,27(11): 1262-1265.

    [YE W M, QIAN L X, BAI Y, et al. Predicting coefficient of permeability from soil-water characteristic curve for Shanghai soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11): 1262-1265. (in Chinese)]
    [20]
    [20]刘争宏,王华山,周远强,等.安哥拉Quelo砂场地非饱和渗流试验与计算[J].水文地质工程地质,2018,45(4): 79-85.

    [LIU Z H, WANG H S, ZHOU Y Q, et al. Test and calculation of unsaturated seepage in the Angola Quelo sandy soil site[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 79-85,. (in Chinese)]
    [21]
    [21]FREDLUND D G, XING A Q. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532.
  • Cited by

    Periodical cited type(8)

    1. 弋鹏飞,张建鹏,马瑞,马奭文,李永发. 伊犁黄土水分入渗规律试验研究. 地下水. 2024(03): 119-122 .
    2. 高宗军,丁子祺,刘久潭,刘文悦. 砂介质渗透性影响因素的试验研究. 水文地质工程地质. 2024(06): 8-17 . 本站查看
    3. 王海曼,倪万魁. 不同干密度压实黄土的饱和/非饱和渗透系数预测模型. 岩土力学. 2022(03): 729-736 .
    4. 吕澄浒,樊秀峰,吴振祥,王晓摇. 碎石土大孔隙结构定量化表征. 水利与建筑工程学报. 2022(02): 27-33+92 .
    5. 余岱金,黄强兵,康孝森,陈星,刘悦. 黄土填方边坡界面渗流破坏机制模型试验研究. 水文地质工程地质. 2022(05): 119-128 . 本站查看
    6. 马力,罗强,武璟,毕银丽,彭苏萍,薛飞. 露天矿外排土场粒径及土层厚度对表土渗透规律影响. 太原理工大学学报. 2021(06): 953-959 .
    7. 赵乐,倪万魁,张镇飞,王海曼,刘魁. 不同干密度压实黄土垂直积水入渗特性. 科学技术与工程. 2021(33): 14310-14317 .
    8. 强毅,李勇,邱仁敏,覃荣高,吕许朋,范良军. 西南岩溶区非饱和红黏土初始含水率对氟运移影响试验研究. 安全与环境学报. 2021(06): 2827-2834 .

    Other cited types(16)

Catalog

    Article views (848) PDF downloads (718) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return