Citation: | SUN De'an, WANG Jian, HE Jiahao, XU Yongfu. Compression characteristics and pore-size distributions of the undisturbed Yangzhou clayey soils[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 111-116. DOI: 10.16030/j.cnki.issn.1000-3665.201903005 |
The study of the correlation between compression characteristics and pore size distributions (PSDs) is one of the ways to explore the macroscopic and microscopic relationship of soils. To study the pore structure at different depths with similar initial void ratio and different compression characteristics and the pore structure changes at all different depths after undergoing a loading and unloading, a series of compression and mercury intrusion porosimetry (MIP) tests were simultaneously conducted on the undisturbed Yangzhou clayey soils at different depths. The test results show that the PSD of the undisturbed Yangzhou clayey soils at depth from 3 to 21 m is unimodal. The pore-size mainly distributes between 0.2 and 5 μm. The compression performance is closely related to the PSD, and the more concentrated the PSD, the smaller the compressibility. The soil samples at depths 12, 15 and 18 m have wider PSD, much more small pores, greater compressibility and stronger structure than other depths. The compressibility at different depths with similar initial void ratio is different with different PSDs. After undergoing a loading and unloading, the proportion of the medium pores in each soil layer decreases, the PSD moves toward the small pore diameter, and the proportion of the large pores does not change much, while the cumulative pore volume decreases at depths 12, 15 and 18 m are larger, so the decrease in the proportion of the medium pores at the 12, 15 and 18 m soil samples is more pronounced. The research results are of reference value for the study of the correlation between the engineering characteristics and microstructure of clayey soils.
[1] |
施斌, 李生林, TOLKACHEV M. 粘性土微观结构SEM图象的定量研究[J]. 中国科学(A辑), 1995, 25(6): 666-672.
SHI B, LI S L, TOLKACHEV M. Quantitative study of SEM images of cohesive soil microstructure[J]. Chinese Science (Series A), 1995, 25(6): 666-672. (in Chinese)
|
[2] |
成玉祥, 杜东菊, 李忠良. 结构性吹填土剪切破坏的微结构效应[J]. 水文地质工程地质, 2008, 35(1): 32-35. DOI: 10.3969/j.issn.1000-3665.2008.01.007
CHENG Y X, DU D J, LI Z L. Micro-structural effect of sheer failure in structured hydraulic fill[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 32-35. (in Chinese) DOI: 10.3969/j.issn.1000-3665.2008.01.007
|
[3] |
张先伟, 孔令伟, 王静. 针对黏性土胶质联结特征的SEM-EDS试验研究[J]. 岩土力学, 2013, 34(增刊2): 195-203.
ZHANG X W, KONG L W, WANG J. Experimental study of SEM-EDS for cementation bond characteristics of Zhanjiang clay[J]. Rock and Soil Mechanics, 2013, 34(Sup2): 195-203. (in Chinese)
|
[4] |
BUTTRESS A J, GRENFELL J A, AIREY G D. Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils[J]. Materials and Structures, 2015, 48(11): 3635-3655. DOI: 10.1617/s11527-014-0428-y
|
[5] |
崔素丽, 黄森, 韩琳, 等. 水泥窑灰改性黄土的湿陷性和强度特性研究[J]. 水文地质工程地质, 2018, 45(4): 73-78. DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.11
CUI S L, HUANG S, HAN L, et al. A study of the collapsibility and strength property of loess stabilized by cement kiln ash[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 73-78. (in Chinese) DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.11
|
[6] |
谈云志, 孔令伟, 郭爱国, 等. 压实过程对红黏土的孔隙分布影响研究[J]. 岩土力学, 2010, 31(5): 1427-1430. DOI: 10.3969/j.issn.1000-7598.2010.05.013
TAN Y Z, KONG L W, GUO A G, et al. Research on effect of compaction on pore size distribution of laterite soil[J]. Rock and Soil Mechanics, 2010, 31(5): 1427-1430. (in Chinese) DOI: 10.3969/j.issn.1000-7598.2010.05.013
|
[7] |
张云, 薛禹群, 吴吉春, 等. 江苏太仓浅部淤泥质土层的工程地质特征[J]. 水文地质工程地质, 2010, 37(4): 43-47. https://www.swdzgcdz.com/article/id/201004010
ZHANG Y, XUE Y Q, WU J C, et al. Engineering geological characteristics of shallow mucky soil in Taicang area, Jiangsu Province[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 43-47. (in Chinese) https://www.swdzgcdz.com/article/id/201004010
|
[8] |
GRIFFITHS F J, JOSHI R C. Change in pore size distribution due to consolidation of clays[J]. Géotechnique, 1989, 39(1): 159-167. DOI: 10.1680/geot.1989.39.1.159
|
[9] |
GRIFFITHS F J, JOSHI R C. Change in pore size distribution owing to secondary consolidation of clays[J]. Canadian Geotechnical Journal, 1991, 28(1): 20-24. DOI: 10.1139/t91-003
|
[10] |
NINJGARAV E, CHUNG S G, JANG W Y, et al. Pore size distribution of Pusan clay measured by mercury intrusion porosimetry[J]. KSCE Journal of Civil Engineering, 2007, 11(3): 133-139. DOI: 10.1007/BF02823892
|
[11] |
任克彬, 王博, 李新明, 等. 制样方法对粉土力学特性及孔隙特征的影响[J]. 岩石力学与工程学报, 2019, 38(4): 842-851.
REN K B, WANG B, LI X M, et al. Influence of the compaction procedure on mechanical behaviors and pore characteristics of silts[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 842-851. (in Chinese)
|
[12] |
OUALMAKRAN M, MERCATORIS B C N, FRANÇOIS B. Pore-size distribution of a compacted silty soil after compaction, saturation, and loading[J]. Canadian Geotechnical Journal, 2016, 53(12): 1902-1909. DOI: 10.1139/cgj-2016-0184
|
[13] |
ALONSO E E, PINYOL N M, GENS A. Compacted soil behaviour: initial state, structure and constitutive modelling[J]. Géotechnique, 2013, 63(6): 463-478. DOI: 10.1680/geot.11.P.134
|
[14] |
南京水利科学研究院土工研究所. 土工试验技术手册[M]. 北京: 人民交通出版社, 2003.
Institute of Geotechnical Engineering, Nanjing Hydraulic Research Institute. Manual of geotechnical testing[M]. Beijing: China Communications Press, 2003. (in Chinese)
|
[15] |
张平, 房营光, 闫小庆, 等. 不同干燥方法对重塑膨润土压汞试验用土样的影响试验研究[J]. 岩土力学, 2011, 32(增刊1): 388-391.
ZHANG P, FANG Y G, YAN X Q, et al. Study of different dry methods for drying remolded bentonite sample with mercury intrusion test[J]. Rock and Soil Mechanics, 2011, 32(Sup1): 388-391. (in Chinese)
|
[16] |
刘汉民, 孟斌, 吴恒, 等. 冷冻与置换干燥法制备海积软土压汞试样的制备效果对比试验[C]//第十七届中国海洋(案)工程学术讨论会论文集. 南宁: 海洋出版社, 2015
LIU H M, MENG B, WU H, et al. Comparative experiment on preparation of mercury intrusion samples from sea soft soil by freezing and displacement drying method[C]. Proceedings of the 17th China Ocean(Case)Engineering Symposium. Nanning: Ocean Press, 2015. (in Chinese)
|
[17] |
WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921, 7(4): 115-116.
|
[18] |
吕海波, 汪稔, 赵艳林, 等. 软土结构性破损的孔径分布试验研究[J]. 岩土力学, 2003, 24(4): 573-578.
LU H B, WANG R, ZHAO Y L, et al. Study of structure characteristics evolution of soft clay by pore size distribution test[J]. Rock and Soil Mechanics, 2003, 24(4): 573-578. (in Chinese)
|
[19] |
雷华阳, 姜岩, 陆培毅, 等. 交通荷载作用下结构性软土的孔径分布试验[J]. 中国公路学报, 2009, 22(2): 6-11.
LEI H Y, JIANG Y, LU P Y, et al. Pore size distribution test of structural soft soil under traffic loading[J]. China Journal of Highway and Transport, 2009, 22(2): 6-11. (in Chinese)
|
[20] |
KONG L W, LUO H X, TAN L R. Fractal study on pore space distribution of red clay in China[C]//10th Asian Regional Conference on Soil Mechanics and Foundation Engineering. Beijing: International Academic Publishers, 1995: 139-142.
|
1. |
傅宇晨,高游,李泽. 基于孔径分布函数的单/双峰持水曲线模型. 宁波大学学报(理工版). 2024(02): 72-77 .
![]() | |
2. |
叶曾云,郑芳云,谈勋勋,石旺. 干密度对花岗岩全风化土的渗流特性研究. 建筑施工. 2022(10): 2482-2486+2494 .
![]() | |
3. |
马露. 无黏性土的压缩特性及模型. 水文地质工程地质. 2021(04): 72-77 .
![]() | |
4. |
姜彤,翟天雅,张俊然,赵金玓,王俪锦,宋陈雨,潘旭威. 基于粒子图像测速技术的黄土径向劈裂试验研究. 岩土力学. 2021(08): 2120-2126+2140 .
![]() |