Citation: | YAOJiaming, . A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 135-146. DOI: 10.16030/j.cnki.issn.1000-3665.201903072 |
[1] |
[1]SCHMIDT D A, BURGMANN R, NADEAU R M, et al. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data[J]. Journal of Geophysical Research -Solid Earth, 2005, 110(B8): B08406.
|
[2] |
[2]BEAVAN J, SAMSONOV S, DENYS P, et al. Oblique slip on the Puysegur subduction interface in the 2009 July MW 7.8 Dusky Sound earthquake from GPS and InSAR observations: implications for the tectonics of southwestern New Zealand[J]. Geophysical Journal International, 2010, 183(3): 1265-1286.
|
[3] |
[3]CHEN F L, LIN H, LI Z, et al. Interaction between permafrost and infrastructure along the Qinghai -Tibet Railway detected via jointly analysis of C -and L -band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123: 532-540.
|
[4] |
[4]RAUCOULES D, MAISONS C, CAMEC C, et al. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) -Comparison with ground -based measurement[J]. Remote Sensing of Environment, 2003, 88(4): 468-478.
|
[5] |
[5]STROZZI T, DELALOYE R, POFFET D, et al. Surface subsidence and uplift above a headrace tunnel in metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry[J]. Remote Sensing of Environment, 2011, 115(6): 1353-1360.
|
[6] |
[6]JIANG L M, LIN H, MA J W, et al. Potential of small -baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2): 257-268.
|
[7] |
[7]ZHAO C Y, LU Z, ZHANG Q, et al. Large -area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124: 348-359.
|
[8] |
[8]MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
|
[9] |
[9]AMELUNG F, YUN S H, WALTER T R, et al. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii[J]. Science, 2007, 316(5827): 1026-1030.
|
[10] |
[10]ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research -Solid Earch and Plants, 1986, 91(B5): 4993-4999.
|
[11] |
[11]GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas -Differential Radar Interferometry[J]. Journal of Geophysical Research -Solid Earch and Plants, 1989, 94(B7): 9183-9191.
|
[12] |
[12]FUJIWARA S, ROSEN P A, TOBITA M, et al. Crustal deformation measurements using repeat -pass JERS 1 synthetic aperture radar interferometry near the Izu Peninsula, Japan[J]. Journal of Geophysical Research -Solid Earth, 1998, 103(B2): 2411-2426.
|
[13] |
[13]MASSONNET D, HOLZER T, VADON H. Land subsidence caused by the East Mesa geothermal filed, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24(8): 901-904.
|
[14] |
[14]BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
|
[15] |
[15]USAI S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 753-760.
|
[16] |
[16]陈玉兴, 江利明, 梁林林, 等. 基于Sentinel -1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441-2454.
[CHEN Y X, JIANG L M, LIANG L L, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi -temporal Sentinel -1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7): 2441-2454.(in Chinese)]
|
[17] |
[17]SAMSONOV S, VAN DER KOOIJ M, TIAMPO K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique[J]. Computers & Geosciences, 2011, 37(8): 1083-1091.
|
[18] |
[18]WRIGHT T J, PARSONS B E, LU Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1): L01607.
|
[19] |
[19]吴立新, 高均海, 葛大庆, 等. 基于D -InSAR的煤矿区开采沉陷遥感监测技术分析[J]. 地理与地理信息科学, 2004, 20(2): 22-25.
[WU L X, GAO J H, GE D Q, et al. Technical analysis of the remote sensing monitoring for coal -mining subsidence based on D -InSAR[J]. Geography and Geo -Information Science, 2004, 20(2): 22-25.(in Chinese)]
|
[20] |
[20]DU Y A, ZHANG L, FENG G C, et al. On the Accuracy of Topographic Residuals Retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1053-1065.
|
[21] |
[21]程滔, 单新建, 董文彤, 等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质, 2008, 35(1): 98-101.
[CHENG T, SHAN X J, DONG W T, et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 98-101.(in Chinese)]
|
[22] |
[22]杜钊锋, 宫辉力, 王洒, 等. 短时空基线PS -InSAR在北京地面沉降监测中的应用[J]. 水文地质工程地质, 2012, 39(5): 116-120.
[DU Z F, GONG H L, WANG S, et al. Application of small spatio -temporal baseline PS -InSAR to the study of land subsidence in Beijing[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 116-120.(in Chinese)]
|
[23] |
[23]雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS -InSAR技术的天津地面沉降研究[J]. 水文地质工程地质, 2013, 40(6): 106-111.
[LEI K C, CHEN B B, GONG H L, et al. Detection of land subsidence in Tianjin based on PS -InSAR technology[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 106-111.(in Chinese)]
|
[24] |
[24]卢欣奇, 李学峰, 张勤斌, 等. 基于PS -InSAR技术的老采空区地表沉陷监测与分析[J]. 中国矿业, 2019, 28(4): 104-110.
[LU X Q, LI X F, ZHANG Q B, et al. Surface subsidence monitoring and analysis of old goaf based on the PS -InSAR technology[J]. China Mining Magazine, 2019, 28(4): 104-110.(in Chinese)]
|
[25] |
[25]刘育平, 李晓莉, 张连猛. 矿山地质环境保护问题分析及对策研究——以贵州省为例[J]. 水文地质工程地质, 2010, 37(5): 137-138.
[LIU Y P, LI X L, ZHANG L M. Analysis and countermeasures of mine geological environment protection in Guizhou province[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 137-138.(in Chinese)]
|
[26] |
[26]罗炳佳, 沈诚. 贵州矿山地质环境影响评估[J]. 水文地质工程地质, 2013, 40(1): 134-138.
[LUO B J, SHEN C. Impact assessment of mine geological environment of Guizhou Province[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 134-138.(in Chinese)]
|
[27] |
[27]朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144.
[ZHU J J, YANG Z F, LI Z W. Recent progress in retrieving and predicting mining -induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144.(in Chinese)]
|
[28] |
[28]韩守富, 赵宝强, 白艳萍, 等. 基于SBAS -InSAR的窑街煤矿开采沉陷研究[J]. 矿山测量, 2019, 47(3): 1-5.
[HAN S F, ZHAO B Q, BAI Y P, et al. Mining subsidence research based on SBAS -InSAR in Yaojie coal mine[J]. Mine Surveying, 2019, 47(3): 1-5.(in Chinese)]
|
[29] |
[29]姚亚辉, 张超, 孙莹洁, 等. 基于InSAR监测采煤沉陷区形变特征[J]. 煤炭技术, 2019, 38(1): 16-19.
[YAO Y H, ZHANG C, SUN Y J, et al. Deformation characteristics of coal mining subsidence area based on InSAR[J]. Coal Technology, 2019, 38(1): 16-19.(in Chinese)]
|
[30] |
[30]王磊, 蒋创, 张鲜妮, 等. 基于单视线向D -InSAR技术的倾斜煤层开采地表沉陷监测方法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 814-820.
[WANG L, JIANG C, ZHANG X N, et al. Monitoring method of surface subsidence induced by inclined coal seam mining based on single line of sight D -InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 814-820.(in Chinese)]
|
[31] |
[31]李华启, 姜在兴, 邢焕清, 等. 四川盆地西部上三叠统须家河组二段风暴岩沉积特征[J]. 石油与天然气地质, 2003, 24(1): 81-86.
[LI H Q, JIANG Z X, XING H Q, et al. Characteristics of storm deposits in upper Triassic Xujiahe formation, Sichuan basin[J]. Oil & Gas Geology, 2003, 24(1): 81-86.(in Chinese)]
|
[32] |
[32]姚鑫, 张永双, 李凌婧, 等. 青藏高原鲜水河活动断裂带蠕变斜坡地质灾害InSAR识别研究[J]. 地质学报, 2017, 91(8): 1694-1705.
[YAO X, ZHANG Y S, LI L J, et al. InSAR -based recognition of slow -moving slop disasters along the Xianshuihe active fault in the Qinghai -Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(8): 1694-1705.(in Chinese)]
|
[33] |
[33]HU J, LI Z W, DING X L, et al. Resolving three dimensional surface displacements from InSAR measurements: A review[J]. Earth -Science Reviews, 2014, 133: 1-17.
|
[34] |
[34]LI H J, ZHONG H Y, LI W C. Research on stability of a slope due to underground mining[J]. Journal of Coal Science & Engineering, 2013, 19(4): 474-482.
|
[35] |
[35]李滨, 王国章, 冯振, 等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报, 2015, 34(6): 1148-1161.
[LI B, WANG G Z, FENG Z, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1148-1161.(in Chinese)]
|
[36] |
[36]OU D P, TAN K, DU Q, et al. Decision fusion of D -InSAR and Pixel Offset Tracking for coal mining deformation monitoring[J]. Remote sensing, 2018, 10(7): 1-18.
|
1. |
张熠斌,宋金红,徐誉维,徐思瑜. 基于时序InSAR的吉林省煤炭采空区地表形变监测及时空演化态势分析. 水文地质工程地质. 2025(01): 202-213 .
![]() | |
2. |
徐文正,卢书强,林振,周王敏. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究. 水文地质工程地质. 2025(02): 150-163 .
![]() | |
3. |
于海明,张熠斌,方向辉,徐思瑜,徐誉维,张旭晴. 综合InSAR技术和多源SAR数据在滑坡变形监测中的应用——以吉林治新村滑坡为例. 中国地质灾害与防治学报. 2024(01): 155-162 .
![]() | |
4. |
岳磊,刘昌义,丛晓明,唐彬元,付江涛,邢光延,雷浩川,赵吉美,吕伟涛,胡夏嵩. 基于InSAR技术的夏藏滩滑坡区地表变形监测与分析. 水文地质工程地质. 2024(03): 158-170 .
![]() | |
5. |
邵东桥,张文纶,靳军,段保平,赵琳. SBAS-InSAR技术在地质灾害精细化调查前期隐患识别中的应用. 甘肃地质. 2024(02): 80-88 .
![]() | |
6. |
周华,俞晓飞,叶异冬. 高精度矿区地表GPS形变数据三维重构技术. 现代测绘. 2024(03): 54-58 .
![]() | |
7. |
戴真印,刘岳霖,张丽平,张贤. 基于改进时序InSAR技术的东莞地面沉降时空演变特征. 中国地质灾害与防治学报. 2023(01): 58-67 .
![]() | |
8. |
尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析. 中国地质灾害与防治学报. 2023(02): 73-81 .
![]() | |
9. |
孙晓鹏,李勇,王毅,汪致恒. InSAR技术在影响高速公路安全的地下采空区及活动断裂带识别中的应用. 测绘. 2023(01): 3-7 .
![]() | |
10. |
李高阳. 煤矿塌陷区岩体变形稳定性研究. 能源与环保. 2023(04): 268-274 .
![]() | |
11. |
郭一兵,翟向华,姜鑫,丁保艳,郭富赟,岳东霞. SBAS-InSAR技术在特大型滑坡变形监测中的应用. 地震工程学报. 2023(03): 642-650+672 .
![]() | |
12. |
任瑞强. 基于地面直流电法的煤矿开采中综合防治水技术. 煤. 2023(09): 79-82 .
![]() | |
13. |
张庆林. 综采工作面开采方案与回采工艺的选择. 山西化工. 2023(09): 170-171 .
![]() | |
14. |
马驷骏,王宁,王行之. InSAR测绘技术在锰矿矿区测量中的应用研究. 中国锰业. 2023(06): 36-41 .
![]() | |
15. |
柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
![]() | |
16. |
贾会会,张海清,李克达,张小朋. 融合分布式散射体时序InSAR技术在矿区形变调查中的应用. 吉林大学学报(地球科学版). 2022(01): 202-213 .
![]() | |
17. |
王洪明,李如仁,覃怡婷,刘竹青,顾骏. 时间序列InSAR技术在矿区地表形变监测中的应用——以内蒙古霍林河露天矿区为例. 中国地质灾害与防治学报. 2022(02): 71-78 .
![]() | |
18. |
杨成业,张涛,高贵,卜崇阳,吴华. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用. 中国地质灾害与防治学报. 2022(03): 94-105 .
![]() | |
19. |
李一帆,杜柏林,付钰涵,杨红磊. 地基干涉雷达实时处理软件设计与开发. 现代矿业. 2022(07): 208-212+216 .
![]() | |
20. |
张凯翔,张占荣,于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用. 中国地质灾害与防治学报. 2022(04): 65-76 .
![]() | |
21. |
胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
![]() | |
22. |
毛国政,方媛,李新森,欧隽而,方昕然,朱惠敏,何培雍. 开采沉陷研究进展——基于2011—2021年CNKI期刊文献统计. 现代矿业. 2022(09): 53-57+94 .
![]() | |
23. |
苏晓军,张毅,贾俊,梁懿文,李媛茜,孟兴民. 基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究. 山地学报. 2021(01): 59-70 .
![]() | |
24. |
宗俊秀. 三维空间影像技术在地质工程中的综合应用. 四川水泥. 2021(12): 82-83 .
![]() | |
25. |
钟祖良,高国富,刘新荣,王南云,李皓. 地下采动下含深大裂隙岩溶山体变形响应特征. 水文地质工程地质. 2020(04): 97-106 .
![]() |