ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
YAOJiaming, . A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 135-146. DOI: 10.16030/j.cnki.issn.1000-3665.201903072
Citation: YAOJiaming, . A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 135-146. DOI: 10.16030/j.cnki.issn.1000-3665.201903072

A study of deformation mode and formation mechanism of abedding landslide induced by mining of gently inclined coal seam based on InSAR technology

More Information
  • Received Date: March 26, 2019
  • Revised Date: August 26, 2019
  • Published Date: September 09, 2020
  • The coal seam of a coal mine in Zhenfeng county in Guizhou Province is dominated by the synclinal gently dipping Upper Triassic Torch Group (T3h), which is different from the anticlinal gently dipping coal seam of the most coal mines in Guizhou. The ground subsidence and landslide risks induced by mining activities also show different deformation and failure modes. In this paper, PALSAR -2 SAR with a total spatial resolution of 3 m and L -band in 15 periods of orbit ascending and descending observations is used as the data source to carry out D -InSAR measurements of surface deformation in multiple periods, and the location, range and lag time of deformation are determined. Through field investigation and verification, the InSAR calculation results are well consistent with the mining area and the surface damage situation, confirming the accuracy of InSAR in identifying temporal surface deformation in the coal mine area. Furthermore, the 3D surface deformation is decomposed and calculated, and the correlation analysis with the underground mining scope and process deepens the understanding of the bedding landslide deformation mode and formation mechanism induced by the underground mining of gently inclined coal seam in this area. The results show that (1) InSAR can identify and calculate the surface deformation range and settlement of the mining area, and the deformation of the mining area is shown in the interference image as a circular ring deformation fringe with the surface of the goaf as the center and spreading around. (2) The surface deformation area covered the region above the underground mined -out area and areas near the surface, and according to the scope of the surface deformation condition and underground mined -out area in the region the mountain border angle is calculated as about 70°, and the mountain border angle, about 58°. (3) There is a time lag of about 30 d between the underground mining and surface subsidence deformation. (4) The horizontal movement direction of the surface caused by underground mining in bedding strata is affected by the occurrence of strata and the direction of surface slope, and the horizontal direction is the resultant movement result of bedding slip along the bedding strata and convergence to the settlement center. (5) The overlying bedding slip along the plane and surface slope factors results in the tension fracture of the rock on the surface of the goaf on the uphill side, while the subsidence pit and fracture are not easy to occur on the downhill side.
  • [1]
    [1]SCHMIDT D A, BURGMANN R, NADEAU R M, et al. Distribution of aseismic slip rate on the Hayward fault inferred from seismic and geodetic data[J]. Journal of Geophysical Research -Solid Earth, 2005, 110(B8): B08406.
    [2]
    [2]BEAVAN J, SAMSONOV S, DENYS P, et al. Oblique slip on the Puysegur subduction interface in the 2009 July MW 7.8 Dusky Sound earthquake from GPS and InSAR observations: implications for the tectonics of southwestern New Zealand[J]. Geophysical Journal International, 2010, 183(3): 1265-1286.
    [3]
    [3]CHEN F L, LIN H, LI Z, et al. Interaction between permafrost and infrastructure along the Qinghai -Tibet Railway detected via jointly analysis of C -and L -band small baseline SAR interferometry[J]. Remote Sensing of Environment, 2012, 123: 532-540.
    [4]
    [4]RAUCOULES D, MAISONS C, CAMEC C, et al. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France) -Comparison with ground -based measurement[J]. Remote Sensing of Environment, 2003, 88(4): 468-478.
    [5]
    [5]STROZZI T, DELALOYE R, POFFET D, et al. Surface subsidence and uplift above a headrace tunnel in metamorphic basement rocks of the Swiss Alps as detected by satellite SAR interferometry[J]. Remote Sensing of Environment, 2011, 115(6): 1353-1360.
    [6]
    [6]JIANG L M, LIN H, MA J W, et al. Potential of small -baseline SAR interferometry for monitoring land subsidence related to underground coal fires: Wuda (Northern China) case study[J]. Remote Sensing of Environment, 2011, 115(2): 257-268.
    [7]
    [7]ZHAO C Y, LU Z, ZHANG Q, et al. Large -area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment, 2012, 124: 348-359.
    [8]
    [8]MASSONNET D, FEIGL K L. Radar interferometry and its application to changes in the earth’s surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500.
    [9]
    [9]AMELUNG F, YUN S H, WALTER T R, et al. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii[J]. Science, 2007, 316(5827): 1026-1030.
    [10]
    [10]ZEBKER H A, GOLDSTEIN R M. Topographic mapping from interferometric synthetic aperture radar observations[J]. Journal of Geophysical Research -Solid Earch and Plants, 1986, 91(B5): 4993-4999.
    [11]
    [11]GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping small elevation changes over large areas -Differential Radar Interferometry[J]. Journal of Geophysical Research -Solid Earch and Plants, 1989, 94(B7): 9183-9191.
    [12]
    [12]FUJIWARA S, ROSEN P A, TOBITA M, et al. Crustal deformation measurements using repeat -pass JERS 1 synthetic aperture radar interferometry near the Izu Peninsula, Japan[J]. Journal of Geophysical Research -Solid Earth, 1998, 103(B2): 2411-2426.
    [13]
    [13]MASSONNET D, HOLZER T, VADON H. Land subsidence caused by the East Mesa geothermal filed, California, observed using SAR interferometry[J]. Geophysical Research Letters, 1997, 24(8): 901-904.
    [14]
    [14]BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
    [15]
    [15]USAI S. A least squares database approach for SAR interferometric data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 753-760.
    [16]
    [16]陈玉兴, 江利明, 梁林林, 等. 基于Sentinel -1 SAR数据的黑河上游冻土形变时序InSAR监测[J]. 地球物理学报, 2019, 62(7): 2441-2454.

    [CHEN Y X, JIANG L M, LIANG L L, et al. Monitoring permafrost deformation in the upstream Heihe River, Qilian Mountain by using multi -temporal Sentinel -1 InSAR dataset[J]. Chinese Journal of Geophysics, 2019, 62(7): 2441-2454.(in Chinese)]
    [17]
    [17]SAMSONOV S, VAN DER KOOIJ M, TIAMPO K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique[J]. Computers & Geosciences, 2011, 37(8): 1083-1091.
    [18]
    [18]WRIGHT T J, PARSONS B E, LU Z. Toward mapping surface deformation in three dimensions using InSAR[J]. Geophysical Research Letters, 2004, 31(1): L01607.
    [19]
    [19]吴立新, 高均海, 葛大庆, 等. 基于D -InSAR的煤矿区开采沉陷遥感监测技术分析[J]. 地理与地理信息科学, 2004, 20(2): 22-25.

    [WU L X, GAO J H, GE D Q, et al. Technical analysis of the remote sensing monitoring for coal -mining subsidence based on D -InSAR[J]. Geography and Geo -Information Science, 2004, 20(2): 22-25.(in Chinese)]
    [20]
    [20]DU Y A, ZHANG L, FENG G C, et al. On the Accuracy of Topographic Residuals Retrieved by MTInSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1053-1065.
    [21]
    [21]程滔, 单新建, 董文彤, 等. 利用InSAR技术研究黄土地区滑坡分布[J]. 水文地质工程地质, 2008, 35(1): 98-101.

    [CHENG T, SHAN X J, DONG W T, et al. A study of landslide distribution in loess area with InSAR[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 98-101.(in Chinese)]
    [22]
    [22]杜钊锋, 宫辉力, 王洒, 等. 短时空基线PS -InSAR在北京地面沉降监测中的应用[J]. 水文地质工程地质, 2012, 39(5): 116-120.

    [DU Z F, GONG H L, WANG S, et al. Application of small spatio -temporal baseline PS -InSAR to the study of land subsidence in Beijing[J]. Hydrogeology & Engineering Geology, 2012, 39(5): 116-120.(in Chinese)]
    [23]
    [23]雷坤超, 陈蓓蓓, 宫辉力, 等. 基于PS -InSAR技术的天津地面沉降研究[J]. 水文地质工程地质, 2013, 40(6): 106-111.

    [LEI K C, CHEN B B, GONG H L, et al. Detection of land subsidence in Tianjin based on PS -InSAR technology[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 106-111.(in Chinese)]
    [24]
    [24]卢欣奇, 李学峰, 张勤斌, 等. 基于PS -InSAR技术的老采空区地表沉陷监测与分析[J]. 中国矿业, 2019, 28(4): 104-110.

    [LU X Q, LI X F, ZHANG Q B, et al. Surface subsidence monitoring and analysis of old goaf based on the PS -InSAR technology[J]. China Mining Magazine, 2019, 28(4): 104-110.(in Chinese)]
    [25]
    [25]刘育平, 李晓莉, 张连猛. 矿山地质环境保护问题分析及对策研究——以贵州省为例[J]. 水文地质工程地质, 2010, 37(5): 137-138.

    [LIU Y P, LI X L, ZHANG L M. Analysis and countermeasures of mine geological environment protection in Guizhou province[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 137-138.(in Chinese)]
    [26]
    [26]罗炳佳, 沈诚. 贵州矿山地质环境影响评估[J]. 水文地质工程地质, 2013, 40(1): 134-138.

    [LUO B J, SHEN C. Impact assessment of mine geological environment of Guizhou Province[J]. Hydrogeology & Engineering Geology, 2013, 40(1): 134-138.(in Chinese)]
    [27]
    [27]朱建军, 杨泽发, 李志伟. InSAR矿区地表三维形变监测与预计研究进展[J]. 测绘学报, 2019, 48(2): 135-144.

    [ZHU J J, YANG Z F, LI Z W. Recent progress in retrieving and predicting mining -induced 3D displacements using InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(2): 135-144.(in Chinese)]
    [28]
    [28]韩守富, 赵宝强, 白艳萍, 等. 基于SBAS -InSAR的窑街煤矿开采沉陷研究[J]. 矿山测量, 2019, 47(3): 1-5.

    [HAN S F, ZHAO B Q, BAI Y P, et al. Mining subsidence research based on SBAS -InSAR in Yaojie coal mine[J]. Mine Surveying, 2019, 47(3): 1-5.(in Chinese)]
    [29]
    [29]姚亚辉, 张超, 孙莹洁, 等. 基于InSAR监测采煤沉陷区形变特征[J]. 煤炭技术, 2019, 38(1): 16-19.

    [YAO Y H, ZHANG C, SUN Y J, et al. Deformation characteristics of coal mining subsidence area based on InSAR[J]. Coal Technology, 2019, 38(1): 16-19.(in Chinese)]
    [30]
    [30]王磊, 蒋创, 张鲜妮, 等. 基于单视线向D -InSAR技术的倾斜煤层开采地表沉陷监测方法[J]. 武汉大学学报(信息科学版), 2019, 44(6): 814-820.

    [WANG L, JIANG C, ZHANG X N, et al. Monitoring method of surface subsidence induced by inclined coal seam mining based on single line of sight D -InSAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 814-820.(in Chinese)]
    [31]
    [31]李华启, 姜在兴, 邢焕清, 等. 四川盆地西部上三叠统须家河组二段风暴岩沉积特征[J]. 石油与天然气地质, 2003, 24(1): 81-86.

    [LI H Q, JIANG Z X, XING H Q, et al. Characteristics of storm deposits in upper Triassic Xujiahe formation, Sichuan basin[J]. Oil & Gas Geology, 2003, 24(1): 81-86.(in Chinese)]
    [32]
    [32]姚鑫, 张永双, 李凌婧, 等. 青藏高原鲜水河活动断裂带蠕变斜坡地质灾害InSAR识别研究[J]. 地质学报, 2017, 91(8): 1694-1705.

    [YAO X, ZHANG Y S, LI L J, et al. InSAR -based recognition of slow -moving slop disasters along the Xianshuihe active fault in the Qinghai -Tibetan Plateau[J]. Acta Geologica Sinica, 2017, 91(8): 1694-1705.(in Chinese)]
    [33]
    [33]HU J, LI Z W, DING X L, et al. Resolving three dimensional surface displacements from InSAR measurements: A review[J]. Earth -Science Reviews, 2014, 133: 1-17.
    [34]
    [34]LI H J, ZHONG H Y, LI W C. Research on stability of a slope due to underground mining[J]. Journal of Coal Science & Engineering, 2013, 19(4): 474-482.
    [35]
    [35]李滨, 王国章, 冯振, 等. 地下采空诱发陡倾层状岩质斜坡失稳机制研究[J]. 岩石力学与工程学报, 2015, 34(6): 1148-1161.

    [LI B, WANG G Z, FENG Z, et al. Failure mechanism of steeply inclined rock slopes induced by underground mining[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1148-1161.(in Chinese)]
    [36]
    [36]OU D P, TAN K, DU Q, et al. Decision fusion of D -InSAR and Pixel Offset Tracking for coal mining deformation monitoring[J]. Remote sensing, 2018, 10(7): 1-18.
  • Cited by

    Periodical cited type(25)

    1. 张熠斌,宋金红,徐誉维,徐思瑜. 基于时序InSAR的吉林省煤炭采空区地表形变监测及时空演化态势分析. 水文地质工程地质. 2025(01): 202-213 . 本站查看
    2. 徐文正,卢书强,林振,周王敏. 联合InSAR与神经网络的范家坪滑坡形变监测及预测研究. 水文地质工程地质. 2025(02): 150-163 . 本站查看
    3. 于海明,张熠斌,方向辉,徐思瑜,徐誉维,张旭晴. 综合InSAR技术和多源SAR数据在滑坡变形监测中的应用——以吉林治新村滑坡为例. 中国地质灾害与防治学报. 2024(01): 155-162 .
    4. 岳磊,刘昌义,丛晓明,唐彬元,付江涛,邢光延,雷浩川,赵吉美,吕伟涛,胡夏嵩. 基于InSAR技术的夏藏滩滑坡区地表变形监测与分析. 水文地质工程地质. 2024(03): 158-170 . 本站查看
    5. 邵东桥,张文纶,靳军,段保平,赵琳. SBAS-InSAR技术在地质灾害精细化调查前期隐患识别中的应用. 甘肃地质. 2024(02): 80-88 .
    6. 周华,俞晓飞,叶异冬. 高精度矿区地表GPS形变数据三维重构技术. 现代测绘. 2024(03): 54-58 .
    7. 戴真印,刘岳霖,张丽平,张贤. 基于改进时序InSAR技术的东莞地面沉降时空演变特征. 中国地质灾害与防治学报. 2023(01): 58-67 .
    8. 尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析. 中国地质灾害与防治学报. 2023(02): 73-81 .
    9. 孙晓鹏,李勇,王毅,汪致恒. InSAR技术在影响高速公路安全的地下采空区及活动断裂带识别中的应用. 测绘. 2023(01): 3-7 .
    10. 李高阳. 煤矿塌陷区岩体变形稳定性研究. 能源与环保. 2023(04): 268-274 .
    11. 郭一兵,翟向华,姜鑫,丁保艳,郭富赟,岳东霞. SBAS-InSAR技术在特大型滑坡变形监测中的应用. 地震工程学报. 2023(03): 642-650+672 .
    12. 任瑞强. 基于地面直流电法的煤矿开采中综合防治水技术. 煤. 2023(09): 79-82 .
    13. 张庆林. 综采工作面开采方案与回采工艺的选择. 山西化工. 2023(09): 170-171 .
    14. 马驷骏,王宁,王行之. InSAR测绘技术在锰矿矿区测量中的应用研究. 中国锰业. 2023(06): 36-41 .
    15. 柴龙飞,魏路,张震. 基于SBAS-InSAR的安徽省宿州市埇桥区2019—2022年地面沉降监测及影响因素分析研究. 安徽地质. 2023(04): 348-352 .
    16. 贾会会,张海清,李克达,张小朋. 融合分布式散射体时序InSAR技术在矿区形变调查中的应用. 吉林大学学报(地球科学版). 2022(01): 202-213 .
    17. 王洪明,李如仁,覃怡婷,刘竹青,顾骏. 时间序列InSAR技术在矿区地表形变监测中的应用——以内蒙古霍林河露天矿区为例. 中国地质灾害与防治学报. 2022(02): 71-78 .
    18. 杨成业,张涛,高贵,卜崇阳,吴华. SBAS-InSAR技术在西藏江达县金沙江流域典型巨型滑坡变形监测中的应用. 中国地质灾害与防治学报. 2022(03): 94-105 .
    19. 李一帆,杜柏林,付钰涵,杨红磊. 地基干涉雷达实时处理软件设计与开发. 现代矿业. 2022(07): 208-212+216 .
    20. 张凯翔,张占荣,于宪煜. SBAS-InSAR和PS-InSAR技术在鲁西南某线性工程沿线地面沉降成因分析中的应用. 中国地质灾害与防治学报. 2022(04): 65-76 .
    21. 胡华宗. 基于无人机遥感技术的矿井地面塌陷综合监测. 能源与环保. 2022(09): 85-89 .
    22. 毛国政,方媛,李新森,欧隽而,方昕然,朱惠敏,何培雍. 开采沉陷研究进展——基于2011—2021年CNKI期刊文献统计. 现代矿业. 2022(09): 53-57+94 .
    23. 苏晓军,张毅,贾俊,梁懿文,李媛茜,孟兴民. 基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究. 山地学报. 2021(01): 59-70 .
    24. 宗俊秀. 三维空间影像技术在地质工程中的综合应用. 四川水泥. 2021(12): 82-83 .
    25. 钟祖良,高国富,刘新荣,王南云,李皓. 地下采动下含深大裂隙岩溶山体变形响应特征. 水文地质工程地质. 2020(04): 97-106 . 本站查看

    Other cited types(3)

Catalog

    Article views (520) PDF downloads (536) Cited by(28)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return