Citation: | WANG Tianyuan, DENG Yuebao, MAO Weiyun, LIU Quan. A study of the effect of heating on vacuum preloading for soft ground[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 62-68. DOI: 10.16030/j.cnki.issn.1000-3665.201906035 |
The conventional vacuum preloading method takes a long time to treat the super soft soil foundation, and its reinforcement effect is sometimes limited. The vacuum preloading combined with heating technology is a new soft ground treatment technology proposed in recent years. In this work, a model test device with a temperature controlling regulator is designed. One of the typical soft clay in the Ningbo area is applied in this model test. A comparative study is carried out to evaluate the effects of the vacuum preloading combined heating and conventional vacuum preloading treatment. The development trends of temperature, pore pressure and settlement of the soft soil foundation under different heating temperatures (from normal temperature to 80 ℃) are analyzed in detail, and the physical and mechanical characteristics of the soil before and after different technology reinforcement are compared. The results show that compared with the conventional vacuum preloading, the vacuum preloading combined heating technology can accelerate the consolidation rate, reduce the post-construction settlement and improve the bearing capacity of the soft soil foundation. When the heating temperature is not high, the effect of vacuum preloading increases with the temperature, and this trend increases nonlinearly. When the temperature reaches a certain value, the strengthening effect of the combined thermal treatment technology will be attenuated or even counter-acting. According to the inversion analysis of consolidation settlement, the consolidation coefficient of the soft soil treated at 40 ℃, 50 ℃ and 60 ℃ increases by 30%, 35% and 5%, respectively, compared with the normal temperature. Considering the treatment effect and economy, heating to 40~50 ℃ is the suitable temperature range of the thermal foundation treatment technology.
[1] |
KJELLMAN W. Consolidation of clay soil by means of atmosphere pressure[C]//Proceedings of a conference on soil stabilization. Boston: MIT Press, 1952: 258-263.
|
[2] |
武亚军, 顾赛帅, 骆嘉成, 等. 无机药剂对工程废浆药剂真空预压的影响[J]. 中国公路学报, 2018, 31(9): 34-42. DOI: 10.3969/j.issn.1001-7372.2018.09.005
WU Y J, GU S S, LUO J C, et al. Effect of inorganie chemicals on vacuum preloading with flocculation of construction waste slurry[J]. China Journal of Highway and Transport, 2018, 31(9): 34-42. (in Chinese) DOI: 10.3969/j.issn.1001-7372.2018.09.005
|
[3] |
武亚军, 顾赛帅, 卢立海, 等. 药剂掺量对高黏粒含量废浆渗透性和真空固结特性的影响[J]. 上海大学学报(自然科学版), 2018, 24(4): 617-626.
WU Y J, GU S S, LU L H, et al. Effects of new chemicals on permeability and vacuum consolidation of waste pulp in high clay content[J]. Journal of Shanghai University(Natural Science Edition), 2018, 24(4): 617-626. (in Chinese)
|
[4] |
高志义, 张美燕, 张健. 真空预压联合电渗法室内模型试验研究[J]. 中国港湾建设, 2000, 20(5): 58-61. DOI: 10.3969/j.issn.1003-3688.2000.05.014
GAO Z Y, ZHANG M Y, ZHANG J. Laboratory model test of vacuum preloading in combination with electro-osmotic consolidation[J]. China Harbour Engineering, 2000, 20(5): 58-61. (in Chinese) DOI: 10.3969/j.issn.1003-3688.2000.05.014
|
[5] |
曹永华, 侯晋芳, 高志义. 真空预压联合电渗加固高塑性软土的试验研究[J]. 岩土工程技术, 2010, 24(6): 290-293.
CAO Y H, HOU J F, GAO Z Y. Laboratory test on improving high plasticity soft soil with vacuum preloading combined electroosmotic[J]. Geotechnical Engineering Technique, 2010, 24(6): 290-293. (in Chinese)
|
[6] |
曹永华, 高志义. 电渗法中排水固结理论与实践的若干问题[J]. 中国港湾建设, 2010, 30(3): 22-24.
CAO Y H, GAO Z Y. Some problems on theory and application of drainage consolidation in electroosmotic for ground improvement[J]. China Harbour Engineering, 2010, 30(3): 22-24. (in Chinese)
|
[7] |
王柳江, 刘斯宏, 汪俊波, 等. 真空预压联合电渗法处理高含水率软土模型试验[J]. 河海大学学报(自然科学版), 2011, 39(6): 671-675. DOI: 10.3876/j.issn.1000-1980.2011.06.015
WANG L J, LIU S H, WANG J B, et al. Model test for high-water-content soft soil treatment under vacuum preloading in combination with electroosmosis[J]. Journal of Hohai University(Natural Sciences), 2011, 39(6): 671-675. (in Chinese) DOI: 10.3876/j.issn.1000-1980.2011.06.015
|
[8] |
徐伟, 刘斯宏, 王柳江, 等. 真空预压联合电渗法加固软基的固结方程[J]. 河海大学学报(自然科学版), 2011, 39(2): 169-175.
XU W, LIU S H, WANG L J, et al. Analytical theory of soft ground consolidation under vacuum preloading combined with electro-osmosis[J]. Journal of Hohai University(Natural Sciences), 2011, 39(2): 169-175. (in Chinese)
|
[9] |
王军, 王逸杰, 刘飞禹, 等. 间歇式真空预压联合电渗加固吹填软土试验[J]. 中国公路学报, 2016, 29(10): 37-45. DOI: 10.3969/j.issn.1001-7372.2016.10.005
WANG J, WANG Y J, LIU F Y, et al. Test of reinforcement by intermittent vacuum preloading-electroosmosis in dredger soft clay[J]. China Journal of Highway and Transport, 2016, 29(10): 37-45. (in Chinese) DOI: 10.3969/j.issn.1001-7372.2016.10.005
|
[10] |
金小荣. 真空联合堆载预压加固软基试验及理论研究[D]. 杭州: 浙江大学, 2007.
JIN X R. Vacuum-surchargepreloading: experiment and theory[D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
|
[11] |
金小荣, 俞建霖, 龚晓南, 等. 真空联合堆载预压加固深厚软基工后沉降的测试与分析[J]. 中国农村水利水电, 2007(2): 37-39.
JIN X R, YU J L, GONG X N, et al. Measurement and analysis of settlement of deep soft foundation after vacuum combined preloading[J]. Rural China Water Conservancy and Hydropower, 2007(2): 37-39. (in Chinese)
|
[12] |
朱平, 孙立强, 闫澍旺, 等. 可控通气真空预压室内模型试验及其机制分析[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3141-3148.
ZHU P, SUN L Q, YAN S W, et al. Model test of vacuum preloading with controlled ventilation and its mechanism analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup 1): 3141-3148. (in Chinese)
|
[13] |
ABUEL-NAGA H M, BERGADO D T, CHAIPRAKAIKEOW S. Innovative thermal technique for enhancing the performance of prefabricated vertical drain during the preloading process[J]. Geotextiles and Geomembranes, 2006, 24(6): 359-370. DOI: 10.1016/j.geotexmem.2006.04.003
|
[14] |
陶海冰. 热流固作用下软土静动力学特性及应用[D]. 杭州: 浙江大学, 2015.
TAO H B. The thermo-hydro-mechanical effect on static and dynamic properties of soft soil and it's application[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
|
[15] |
陶海冰, 刘干斌, 谢康和, 等. 竖井地基热排水固结本构模型及试验验证[J]. 岩土工程学报, 2015, 37(6): 1077-1085.
TAO H B, LIU G B, XIE K H, et al. A constitutive model for thermal consolidation with vertical drains and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1077-1085. (in Chinese)
|
[16] |
陶海冰, 谢康和, 刘干斌, 等. 考虑温度耦合效应的竖井地基固结有限元分析[J]. 岩土力学, 2013, 34(增刊1): 494-500.
TAO H B, XIE K H, LIU G B, et al. Finite element analysis of foundation consolidation by vertical drains coupling thermo-hydro-mechanical effect[J]. Rock and Soil Mechanics, 2013, 34(Sup 1): 494-500. (in Chinese)
|
[17] |
刘干斌, 范高飞, 陶海冰, 等. 竖井地基热排水固结模型试验[J]. 中南大学学报(自然科学版), 2017, 48(2): 448-456.
LIU G B, FAN G F, TAO H B, et al. Model test on thermal drainage consolidation of foundation with vertical drain[J]. Journal of Central South University(Science and Technology), 2017, 48(2): 448-456. (in Chinese)
|
[18] |
尹铁锋, 刘干斌, 郭桢, 等. 竖井地基热排水固结理论初探[J]. 水文地质工程地质, 2014, 41(3): 41-46. https://www.swdzgcdz.com/article/id/20140307
YIN T F, LIU G B, GUO Z, et al. A preliminary study of the theory of consolidation by vertical thermal drain[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 41-46. (in Chinese) https://www.swdzgcdz.com/article/id/20140307
|
[19] |
吴佳辉, 郑荣跃, 刘干斌, 等. 考虑温度效应的单井固结解析解[J]. 水文地质工程地质, 2018, 45(2): 1-6.
WU J H, ZHENG R Y, LIU G B, et al. Analytical solution for single well consolidation considering the temperature effect[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 1-6. (in Chinese)
|
[20] |
谢柯, 尹铁锋, 刘干斌, 等. 竖井地基热排水固结模型试验及有限元模拟[J]. 水文地质工程地质, 2015, 42(6): 51-58. https://www.swdzgcdz.com/article/id/20150608
XIE K, YIN T F, LIU G B, et al. Model test and finite element simulation of thermal drainage consolidation of foundation with vertical drain[J]. Hydrogeology & Engineering Geology, 2015, 42(6): 51-58. (in Chinese) https://www.swdzgcdz.com/article/id/20150608
|
[21] |
邓岳保, 王天园, 刘铨, 等. 真空预压联合加热的地基模型试验装置及试验方法[P]. 浙江: CN108532648A, 2018-09-14.
DENG Y B, WANG T Y, LIU Q, et al. A model test device and its test method for vacuum preloading combined with heating[P]. Zhejiang: CN108532648A, 2018-09-14. (in Chinese)
|
[22] |
徐至钧, 胡中雄, 潘林有. 软土地基和预压法地基处理[M]. 北京: 机械工业出版社, 2005.
XU Z J, HU Z X, PAN L Y. Soft soil foundation and preloading method[M]. Beijing: China Machine Press, 2005. (in Chinese)
|
1. |
吴建奇,陶建伟,符洪涛,李校兵,周晨阳,陈腾. 真空热固结联合强夯处理工程废浆试验研究. 土木与环境工程学报(中英文). 2025(01): 18-26 .
![]() | |
2. |
曹凯,王天祥,张云冬,吴玉涛,程瑾. 电热相变式真空预压对河道底泥微观结构影响的初步研究. 中国港湾建设. 2025(04): 15-20 .
![]() | |
3. |
沈晓杰. 碎石桩联合土工织物施工技术在软土地基施工中的应用研究. 工程建设与设计. 2024(09): 233-235 .
![]() | |
4. |
卢奇,刘干斌,马永政. 考虑热效应的一维电渗固结解析解. 水文地质工程地质. 2024(04): 135-145 .
![]() | |
5. |
曹凯,张珍,吴玉涛,董先锋,胡保安,张云冬,周峰,王寅,程瑾,唐文忠. 清淤底泥脱水干化研究Ⅰ:相变式真空预压技术. 环境工程学报. 2023(12): 3926-3934 .
![]() | |
6. |
刘佳. 道路工程施工中的软土地基处理技术. 工程技术研究. 2022(04): 63-65 .
![]() | |
7. |
郑良科,郑荣跃,邓岳保,郑诗怡. 太阳能加热排水固结法技术经济分析. 施工技术(中英文). 2022(03): 59-63 .
![]() | |
8. |
程瑾,曹凯,吴玉涛,金亚伟,张勇,张珍,高天宇,王小东. 基于增温加热技术的淤泥真空预压现场试验研究. 水文地质工程地质. 2022(04): 125-134 .
![]() | |
9. |
邓岳保,韩逸冬,郑良科,郑荣跃,姚燕明. 太阳能热排水固结模型试验研究. 防灾减灾工程学报. 2022(05): 905-912 .
![]() | |
10. |
樊恒辉,倪晓逸,孟敏强,杨秀娟,张路. 土体热加固方法的研究进展. 水利与建筑工程学报. 2021(05): 1-7 .
![]() | |
11. |
郑良科,郑荣跃,邓岳保,王天园,毛伟赟. 真空预压联合间歇式加热排水固结法加固软黏土模型试验研究. 水道港口. 2020(06): 713-719 .
![]() |