ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
KANG Haiwei, LI Ping, HOU Xiaokun, LI Tonglu, XIA Zengxuan, ZHANG Hui. A study of hysteresis of soil and water characteristics of intact loess[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 76-83. DOI: 10.16030/j.cnki.issn.1000-3665.201907016
Citation: KANG Haiwei, LI Ping, HOU Xiaokun, LI Tonglu, XIA Zengxuan, ZHANG Hui. A study of hysteresis of soil and water characteristics of intact loess[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 76-83. DOI: 10.16030/j.cnki.issn.1000-3665.201907016

A study of hysteresis of soil and water characteristics of intact loess

More Information
  • Received Date: July 07, 2019
  • Revised Date: November 04, 2019
  • There are few studies on hysteresis of soil and water characteristic curve(SWCC) of intact loess, and most of the existing studies focus on remolding soil samples. In order to study the hysteresis characteristics of intact loess in the full suction range, Malan loess (L1) and Lishi loess (L5) in Jingyang were taken as the research objects, their wetting and drying SWCCs were determined by filter paper method and pressure plate instrument. And their pore distribution and mineral composition were measured by mercury intrusion method and X-ray diffraction, respectively. The results show that the SWCCs measured by filter paper method and pressure plate instrument are consistent in the range of pressure plate instrument (0~600 kPa), and the results of two methods are more consistent in the process of drying. Within the total suction range (0~30 000 kPa) measured by filter paper method, the hysteresis of SWCC is characterized by three stages. That is, in the vicinity of natural water content (L1 14.2%, L5 17.3%), SWCC of the two layers of loess has almost no hysteresis; the water content is higher than a certain range of natural water content (L1 is greater than 19.2% and L5 is greater than 18.3%), and there is extremely obvious hysteresis; lower than a certain range of natural water content (L1 is less than 11.2% and L5 is less than 15.4%), there is a weak hysteresis. Repeated drying and wetting cycles under natural conditions result in no hysteresis of SWCC near the natural water content; the potentiation of limited pores on the ink-bottle effect leads to strong hysteresis at high water content; the hydration of clay minerals results in a weak hysteresis at low water content.

  • [1]
    党进谦, 李靖. 非饱和黄土含水量与基质吸力的关系[J]. 水土保持通报, 1995, 15(4): 39-42.

    DANG J Q, LI J. Study on correlation between water content and matrix suction of unsaturated loess[J]. Bulletin of Soil and Water Conservation, 1995, 15(4): 39-42. (in Chinese).
    [2]
    FREDLUND D G. Unsaturated soil mechanics in engineering practice[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(3): 286-321. DOI: 10.1061/(ASCE)1090-0241(2006)132:3(286)
    [3]
    徐全, 谭晓慧, 辛志宇, 等. 土水特征曲线的概率分析[J]. 水文地质工程地质, 2015, 42(3): 79-85. https://www.swdzgcdz.com/article/id/20150313

    XU Q, TAN X H, XIN Z Y, et al. Probabilistic analysis of the soil-water characteristic curve[J]. Hydrogeology & Engineering Geology, 2015, 42(3): 79-85. (in Chinese). https://www.swdzgcdz.com/article/id/20150313
    [4]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. DOI: 10.2136/sssaj1980.03615995004400050002x
    [5]
    周葆春, 孔令伟, 陈伟, 等. 荆门膨胀土土-水特征曲线特征参数分析与非饱和抗剪强度预测[J]. 岩石力学与工程学报, 2010, 29(5): 1052-1059.

    ZHOU B C, KONG L W, CHEN W, et al. Analysis of characteristic parameters of soil-water characteristic curve(swcc)and unsaturated shear strength prediction of Jingmen expansive soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1052-1059. (in Chinese).
    [6]
    谌文武, 刘伟, 王娟, 等. 基于不同渗透持时的非饱和黄土渗透系数预测分析[J]. 岩土工程学报, 2018, 40(增刊1): 22-27.

    CHEN W W, LIU W, WANG J, et al. Prediction of coefficient of permeability of unsaturated loess with different seepage durations[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 1): 22-27. (in Chinese).
    [7]
    VANAPALLI S K, FREDLUND D G, PUFAHL D E. Influence of soil structure and stress history on the soil-water characteristics of a compacted till[J]. Géotechnique, 2001, 51(6): 573-576. DOI: 10.1680/geot.2001.51.6.573
    [8]
    唐东旗, 彭建兵, 孙伟青. 非饱和黄土基质吸力的滤纸法测试[J]. 煤田地质与勘探, 2012, 40(5): 37-41.

    TANG D Q, PENG J B, SUN W Q. Matrix suction test based on the filter paper method for unsaturated loess[J]. Coal Geology & Exploration, 2012, 40(5): 37-41. (in Chinese).
    [9]
    谷琪, 王家鼎, 仝云莉, 等. 滤纸法测非饱和黄土土水特征曲线试验及拟合研究[J]. 土壤通报, 2016, 47(3): 588-593.

    GU Q, WANG J D, TONG Y L, et al. Soil water characteristic curve test and simulation of unsaturated loess based on filter paper method[J]. Chinese Journal of Soil Science, 2016, 47(3): 588-593. (in Chinese).
    [10]
    孙德安, 刘文捷, 吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345-3351.

    SUN D A, LIU W J, LYU H B. Soil-water characteristic curve of Guilin lateritic clay[J]. Rock and Soil Mechanics, 2014, 35(12): 3345-3351. (in Chinese).
    [11]
    WEI C F, DEWOOLKAR M M. Formulation of capillary hysteresis with internal state variables[J]. Water Resources Research, 2006, 42(7). DOI: 10.1029/2005wr004594.
    [12]
    刘奉银, 张昭, 周冬, 等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增刊2): 132-1362.

    LIU F Y, ZHANG Z, ZHOU D, et al. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(Sup 2): 132-136. (in Chinese).
    [13]
    李军, 刘奉银, 王磊, 等. 关于土水特征曲线滞回特性影响因素的研究[J]. 水利学报, 2015, 46(增刊1): 194-199.

    LI J, LIU F Y, WANG L, et al. A research of affect factor on hysteresis behavior for soil-water characteristic curve[J]. Journal of Hydraulic Engineering, 2015, 46(Sup 1): 194-199. (in Chinese).
    [14]
    LU N, KHORSHIDI M. Mechanisms for soil-water retention and hysteresis at high suction range[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(8): 04015032. DOI: 10.1061/(ASCE)GT.1943-5606.0001325
    [15]
    AL-MAHBASHI A M, ELKADY T Y, AL-SHAMRANI M A. Hysteresis soil-water characteristic curves of highly expansive clay[J]. European Journal of Environmental and Civil Engineering, 2018, 22(9): 1041-1059. DOI: 10.1080/19648189.2016.1229232
    [16]
    黄伟, 刘清秉, 项伟, 等. 高吸力段黏土水合机制及微观持水模型研究[J]. 岩土工程学报, 2018, 40(7): 1268-1276.

    HUANG W, LIU Q B, XIANG W, et al. Hydration mechanism and microscopic water retention model of clay at high suction range[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1268-1276. (in Chinese).
    [17]
    南京水利科学研究院. 土工试验方法标准: GB/T50123-1999[S]. 北京: 中国计划出版社, 1999.

    Nanjing Hydraulic Research Institute. Standard for soil test method: GB/T50123-1999[S]. Beijing: China Planning Publishing House, 1999. (in Chinese)
    [18]
    侯凯. 泾阳修石渡剖面黄土成壤与成分特征及其古环境意义[D]. 西安: 长安大学, 2018.

    HOU K. Pedogenic and composition characteristics of the loess soil and its paleo-environmental significance in the xiushidu profile of Jingyang[D]. Xi'an: Changan University, 2018. (in Chinese).
    [19]
    中国建筑科学研究院. 建筑地基基础设计规范: GB50007-2011[S]. 北京: 中国建筑工业出版社, 2012.

    China Academy of Building Research. Code for design of building foundation: GB50007-2011[S]. Beijing: China Construction Industry Press, 2012. (in Chinese)
    [20]
    ASTM D5298-10. Standard Test Method for Measurement of Soil Potential(Suction)Using Filter Paper[S]. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA. 2014 A.
    [21]
    杨爱武, 封安坤, 姜帅, 等. 固结与荷载耦合作用下吹填土力学性质与微结构参数关联性[J]. 水文地质工程地质, 2019, 46(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.2019.05.13

    YANG A W, FENG A K, JIANG S, et al. Correlation between mechanical properties and microstructure parameters of soft dredger fill under the coupling action of consolidation and load[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 96-105. (in Chinese). DOI: 10.16030/j.cnki.issn.1000-3665.2019.05.13
    [22]
    WASHBURN E W. Note on a method of determining the distribution of pore sizes in a porous material[J]. Proceedings of the National Academy of Sciences of the United States of America, 1921, 7(4): 115-116.
    [23]
    雷祥义. 中国黄土的孔隙类型与湿陷性[J]. 中国科学(B辑化学生物学农学医学地学), 1987, 17(12): 1309-1318.

    LEI X Y. The pore types and collapsibility of loess in China[J]. Science in China, Ser. B, 1987, 17(12): 1309-1318. (in Chinese).
    [24]
    BAKER R, FRYDMAN S. Unsaturated soil mechanics[J]. Engineering Geology, 2009, 106(1/2): 26-39.
    [25]
    汪明武, 杨江峰, 李健, 等. 合肥新桥国际机场原状非饱和膨胀土的土水特性研究[J]. 工业建筑, 2012, 42(12): 41-45.

    WANG M W, YANG J F, LI J, et al. Soil-water characteristics of undisturbed and unsaturated expansive clays in the Xinqiao international airport area of Hefei[J]. Industrial Construction, 2012, 42(12): 41-45. (in Chinese).
    [26]
    许旭堂, 简文彬. 非饱和原状残积土土水特征曲线研究[J]. 工程地质学报, 2015, 23(4): 668-674.

    XU X T, JIAN W B. Research on swcc of unsaturated natural residual soil[J]. Journal of Engineering Geology, 2015, 23(4): 668-674. (in Chinese).
    [27]
    MUOZ-CASTELBLANCO J A, PEREIRA J M, DELAGE P, et al. The water retention properties of a natural unsaturated loess from northern France[J]. Géotechnique, 2012, 62(2): 95-106. DOI: 10.1680/geot.9.P.084
    [28]
    汤连生, 颜波, 李振嵩, 等. 花岗岩残积土水土特征曲线的试验研究[J]. 水文地质工程地质, 2008, 35(4): 62-65. https://www.swdzgcdz.com/article/id/200804016

    TANG L S, YAN B, LI Z S, et al. The experimental research on the soil-water characteristic curve of the granite residual soil[J]. Hydrogeology & Engineering Geology, 2008, 35(4): 62-65. (in Chinese). https://www.swdzgcdz.com/article/id/200804016
    [29]
    陈留凤, 彭华. 干湿循环对硬黏土的土水特性影响规律研究[J]. 岩石力学与工程学报, 2016, 35(11): 2337-2344.

    CHEN L F, PENG H. Experimental study on the water retention properties of the hard clay under cyclic suction conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2337-2344. (in Chinese).
    [30]
    NG C W W, SADEGHI H, HOSSEN S K B, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269.
  • Related Articles

    [1]FENG Xiaorui, ZHU Xinghua, SUN Hengfei, JU Liang, WEN Ruixiang, XIAO Yongjiu. Meso and micro pore structure test of Jingyang shallow loess[J]. Hydrogeology & Engineering Geology, 2024, 51(6): 138-148. DOI: 10.16030/j.cnki.issn.1000-3665.202305008
    [2]ZHAO Zhiyan, ZHANG Changliang, SHEN Wei, QIN Tao, LI Ping, LI Tonglu. Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 47-56. DOI: 10.16030/j.cnki.issn.1000-3665.202301009
    [3]WU Weijiang, SONG Binghui, LIU Di, AN Yapeng. Research on the characteristics of water transport in the aeration zone of loess tableland[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 12-22. DOI: 10.16030/j.cnki.issn.1000-3665.202208008
    [4]ZHU Xueqin, LIU Wenbo, LI Zhiming, CHEN Tan, REN Yuxiang, SHAO Hai, WANG Longfeng. Distribution and characterization analyses of strontium-bearing mineral spring water in the Chengde region[J]. Hydrogeology & Engineering Geology, 2020, 47(6): 65-73. DOI: 10.16030/j.cnki.issn.1000-3665.202009007
    [5]LI Tonglu, ZHANG Hui, LI Ping, KANG Haiwei, GE Shulei. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 107-114. DOI: 10.16030/j.cnki.issn.1000-3665.201909058
    [6]SUN De'an, WANG Jian, HE Jiahao, XU Yongfu. Compression characteristics and pore-size distributions of the undisturbed Yangzhou clayey soils[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 111-116. DOI: 10.16030/j.cnki.issn.1000-3665.201903005
    [7]LIU Zhaozhao, ZHONG Xiumei, ZHANG Hongwei, GAO Zhongnan, LIANG Shouyun, WANG Qian. Research on pore microscopic characteristics of undisturbed loess in typical geomorphologies[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 148-155, 161. DOI: 10.16030/j.cnki.issn.1000-3665.2019.02.20
    [8]JIN Pan, CHEN Bo, HU Yunshi. Analyses of the effect of pore-size distribution on permeability of soft clays[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 86-93. DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.13
    [9]YANGJian~, . A study of pore structure,pore fractal feature and permeability of unconsolidated sand[J]. Hydrogeology & Engineering Geology, 2008, 35(3): 93-98.
    [10]SUNDa-zhi~, . Influences of PHEs vertical distribution and migration in soils in Zhangshi irrigated area[J]. Hydrogeology & Engineering Geology, 2008, 35(2): 109-113.

Catalog

    Article views (503) PDF downloads (432) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return