ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
CHEN Hang, LIU Ganbin, GUO Hua, ZHOU Ye, WU Zhangyan. Improved Nishihara rheological model coupling temperature and one-dimensional consolidation solution[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 53-61. DOI: 10.16030/j.cnki.issn.1000-3665.201907061
Citation: CHEN Hang, LIU Ganbin, GUO Hua, ZHOU Ye, WU Zhangyan. Improved Nishihara rheological model coupling temperature and one-dimensional consolidation solution[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 53-61. DOI: 10.16030/j.cnki.issn.1000-3665.201907061

Improved Nishihara rheological model coupling temperature and one-dimensional consolidation solution

More Information
  • Received Date: July 24, 2019
  • Revised Date: August 21, 2019
  • With the development of thermal energy and thermal power pipeline engineering and the large-scale application of ground-source heat pump technology in China, the problems of stress, deformation, seepage, and temperature coupling of rock and soil have become research hotspots in geotechnical engineering. Under a long-term loading, the deformation and strength of rock and soil bodies (especially the soft soil) change with time and are of obvious rheological characteristics. The traditional rheological models do not consider the effects of temperature and temperature rise mode on their parameters. In order to better reflect the rheological consolidation characteristics, the viscoelastic-plasticity of the soft clay is considered, the improved Nishihara model under thermo-mechanical coupling is established based on the Nishihara model by introducing the temperature expansion coefficient, and the stress-strain relationship is given. The analytical solutions are obtained for one-dimensional heat consolidation equation by using the Laplace transform and the inverse transform. The results show that when the consolidation pressure is constant, the temperature rise will accelerate the consolidation of the soil. When the temperature is constant, the pore pressure in the soil decreases with the increasing consolidation pressure. When the elastic modulus of the improved Nishihara model is increased, the speed of pore pressure dissipation and the consolidation of the saturated soil are accelerated. The thermal expansion caused by temperature of the soil particles has a very small effect on the dissipation of the pore pressure. The smaller the viscous coefficient, the faster the pore pressure dissipates and the faster the soil is consolidated. The experimental results are in good agreement with the thermal coupling of the viscoelastic-plasticity of the soil. The improved Nishihara model can better describe the thermal coupling characteristics of the soil.

  • [1]
    蒋中明, DASHNOR HOXHA. 核废料贮存库围岩体热响应耦合场研究[J]. 岩土工程学报, 2006, 28(8): 953-956.

    JIANG Z M, DASHNOR HOXHA. Studies on coupled field of thermal response in rock mass of nuclear waste repository[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 953-956. (in Chinese)
    [2]
    孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.

    SUN J. Rheological properties of geomaterials and their engineering applications[M]. Beijing: China Architecture & Building Press, 1999. (in Chinese)
    [3]
    郭华, 刘干斌, 薛传成. 考虑温度影响的软黏土流变固结模型及解析解[J]. 力学与实践, 2018, 40(1): 24-29.

    GUO H. LIU G B, XUE C C. A rheological consolidation model for soft clay with consideration of temperature and the analytical[J]. Mechanics in Engineering, 2018, 40(1): 24-29. (in Chinese)
    [4]
    郭华, 刘干斌, 郑荣跃, 等. 基于Merchant模型的饱和土体热固结理论研究[J]. 岩石力学与工程学报, 2018, 37(6): 1489-1495.

    GUO H, LIU G B, ZHENG R Y, et al. Thermal consolidation theory of saturated soils based on Merchant model[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1489-1495. (in Chinese)
    [5]
    杨超, 王凯, 舒伟富. 海相软土一维固结流变特性及模型[J]. 湖南科技大学学报(自然科学版), 2018, 33(1): 28-34.

    YANG C, WANG K, SHU W F. Study on creep characteristics and model for one-dimensional consolidation of marine soft soil[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2018, 33(1): 28-34. (in Chinese)
    [6]
    郤保平, 赵阳升, 万志军, 等. 热力耦合作用下花岗岩流变模型的本构关系研究[J]. 岩石力学与工程学报, 2009, 28(5): 956-967.

    XI B P, ZHAO Y S, WAN Z J, et al. Study of constitutive equation of granite rheological model with thermo-mechanical coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 956-967. (in Chinese)
    [7]
    左建平, 满轲, 曹浩, 等. 热力耦合作用下岩石流变模型的本构研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2610-2616.

    ZUO J P, MAN K, CAO H, et al. Study on constitutive equation of rock rheological model with thermo-mechanical coupling effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup 1): 2610-2616. (in Chinese)
    [8]
    张旭东. 基于修正西原模型与Lade-Duncan准则的隧道围岩蠕变效应研究[J]. 科学技术与工程, 2016, 16(18): 72-77.

    ZHANG X D. Study on creep effect of tunnel surrounding rock based on the modified visco-elastoplastic model and Lade-Duncan criterion[J]. Science Technology and Engineering, 2016, 16(18): 72-77. (in Chinese)
    [9]
    曹瑞琅, 段庆伟, 赵宇飞, 等. 基于Hoek-Brown准则西原模型的圆形隧洞黏弹塑性解[J]. 水利水电技术, 2017, 48(4): 64-71.

    CAO R L, DUAN Q W, ZHAO Y F, et al. Hoek-Brown strength criterion and Nishihara model-based visco-elastoplastic solutions for circular tunnel[J]. Water Resources and Hydropower Engineering, 2017, 48(4): 64-71. (in Chinese)
    [10]
    邓宗伟, 唐葭, 朱志祥, 等. 基于改进西原模型的软土流变一维固结解析[J]. 湖南大学学报(自然科学版), 2014, 41(6): 85-91.

    DENG Z W, TANG J, ZHU Z X, et al. Analytical solution for rheological one-dimensional consolidation of soft soil based on improved Nishihara model[J]. Journal of Hunan University(Natural Sciences), 2014, 41(6): 85-91. (in Chinese)
    [11]
    齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(2): 347-355.

    QI Y J, JIANG Q H, WANG Z J, et al. 3d creep constitutive equation of modified nishihara model and its parameters identification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(2): 347-355. (in Chinese)
    [12]
    阎岩, 王思敬, 王恩志. 基于西原模型的变参数蠕变方程[J]. 岩土力学, 2010, 31(10): 3025-3035.

    YAN Y, WANG S J, WANG E Z. Creep equation of variable parameters based on Nishihara model[J]. Rock and Soil Mechanics, 2010, 31(10): 3025-3035. (in Chinese)
    [13]
    付腾飞, 付宝杰. 基于西原模型的非线性损伤蠕变模型[J]. 煤矿开采, 2016, 21(4): 1-4.

    FU T F, FU B J. Nonlinear damage creep model based on Xiyuan model[J]. Coal Mining Technology, 2016, 21(4): 1-4. (in Chinese)
    [14]
    尹铁锋, 刘干斌, 郭桢, 等. 宁波地区典型软黏土热固结特性理论与试验研究[J]建筑结构, 2014, 44(8): 66-69.

    YIN T F, LIU G B, GUO Z, et al. Theoretical and experimental study on thermal consolidation characteristics of typical soft clay in Ningbo region[J]. Building Structure, 2014, 44(8): 66-69. (in Chinese)
    [15]
    谢新宇, 李金柱, 王文军, 等. 宁波软土流变试验及经验模型[J]. 浙江大学学报(工学版), 2012, 46(1): 64-71.

    XIE X Y, LI J Z, WANG W J, et al. Rheological test and empirical model of Ningbo soft soil[J]. Journal of Zhejiang University(Engineering Science), 2012, 46(1): 64-71. (in Chinese)
    [16]
    邓岳保, 陈菲, 刘干斌, 等. 宁波土层的流变固结试验及流变模型参数研究[J]. 水文地质工程地质, 2017, 44(5): 46-51. https://www.swdzgcdz.com/article/id/201705008

    DENG Y B, CHEN F, LIU G B, et al. A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 46-51. (in Chinese) https://www.swdzgcdz.com/article/id/201705008
    [17]
    郭鹏辉, 林玉祥, 胡燕. 区域性温度因素对饱和粘土固结的影响[J]. 煤田地质与勘探, 2012, 40(2): 62-66.

    GUO P H, LIN Y X, HU Y. The regional temperature effects on consolidation of saturated clays[J]. Coal Geology & Exploration, 2012, 40(2): 62-66. (in Chinese)
    [18]
    张鸿雁, 张志政, 王元. 流体力学[M]. 北京: 科学出版社, 2004.

    ZHANG H Y, ZHANG Z Z, WANG Y. Fluid Mechanics[M]. Beijing: Science Press, 2004. (in Chinese)
  • Related Articles

    [1]MA Lu, WANG Kun, TAO Siyuan, CHENG Xiying, CHANG Shan, ZHU Xuemin. Analytical solution for negative skin friction of single pile based on effective stress method[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 79-86. DOI: 10.16030/j.cnki.issn.1000-3665.202309049
    [2]CHEN Peipei, QIAO Dong, WU Nan. Analytical calculation of steady seepage in unsaturated layered soils[J]. Hydrogeology & Engineering Geology, 2024, 51(5): 68-78. DOI: 10.16030/j.cnki.issn.1000-3665.202309038
    [3]LU Qi, LIU Ganbin, MA Yongzheng. Analytical solution of one-dimensional electroosmotic consolidation considering the thermal effect[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 135-145. DOI: 10.16030/j.cnki.issn.1000-3665.202307029
    [4]LI Jiashu, DAI Chuanshan, LEI Haiyan, MA Fei. Analytical solution of formation temperature distribution under dynamic heat load of borehole heat exchangers[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 198-206. DOI: 10.16030/j.cnki.issn.1000-3665.202205040
    [5]ZHU Lin, LEI Haiyan, MA Fei, DAI Chuanshan. Flow pattern analysis around a solid cylinder with both porous and water rings in porous media[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 25-31. DOI: 10.16030/j.cnki.issn.1000-3665.202007045
    [6]WANG Wenke, YIN Hongmei, HUANG Jinting, LI Junting. Estimation of groundwater evaporation based on lysimeter experiment and analytical solution in the Mu Us sandy land[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 1-6. DOI: 10.16030/j.cnki.issn.1000-3665.202012027
    [7]WU Jiahui, ZHENG Rongyue, LIU Ganbin, CHEN Di. Analytical solution for single well consolidation considering the temperature effect[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 1-6. DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.01
    [8]DENGYuebao, . A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 46-46.
    [9]HUANGChaoxuan, . Consolidation properties for vertical drain under complicated loads and nonlinear well resistance[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 57-63.
    [10]HUHui, . Comparative analysis of three methods in shield segment design and onsite monitoring analysis[J]. Hydrogeology & Engineering Geology, 2012, 39(6): 72-76.
  • Cited by

    Periodical cited type(1)

    1. 郭威. 滑带土蠕变本构模型综述. 山西建筑. 2022(04): 82-88 .

    Other cited types(3)

Catalog

    Article views (551) PDF downloads (343) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return