Citation: | ZHAO Jie, LIN Jin, WU Jianfeng, WU Jichun. Prediction of the impact of future climate change on the extent of seawater intrusion in Zhoushuizi district of Dalian City in northern China[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 17-24. DOI: 10.16030/j.cnki.issn.1000-3665.201909012 |
The pumping groundwater, the changing sea level and the rainfall recharge affect the extent of seawater intrusion in the coastal aquifers.With continue change of the future climate, predicting the impact of future climate change on the extent of seawater intrusion can provide a basis for the rational allocation of regional water resources.The calibrated three-dimensional heterogeneous density-dependent numerical model which was constructed by using SEAWAT was applied to predict the impact of future rainfall scenarios including different rainfall frequency analysis and climate modes derived from CMIP5(Coupled Model Intercomparison Project Phase 5)on the extent of seawater intrusion in Zhoushuizi district of Dalian City in northern China.The results show that the extent of seawater intrusion in the future is negatively correlated with the future rainfall, namely the less rainfall, the more severe extent of seawater intrusion.For example, the extent of seawater intrusion in dry years is more severe than that in normal years and wet years.Among the seven climate modes, the future average annual rainfall of MPI climate mode(S7-2-Y)is the minimum, so the extent of seawater intrusion in the future is also the most severe.In the CNRM climate mode(S5-2-Y), the future average annual rainfall is the maximum, so the extent of seawater intrusion in the future is the least severe.And, the extent of seawater intrusion is almost identical to each other for different greenhouse gas emission scenarios of every climate mode.Overall, the extent of seawater intrusion in the future would be even more severe.The establishment of the prediction model can guide the actual water resources allocation of similar coastal areas in China.
[1] |
OUDE ESSINK G H P. Improving fresh groundwatersupply-problems and solutions[J]. Ocean & Coastal Management, 2001, 44(5/6): 429-449.
|
[2] |
PANICONI C, KHLAIFI I, LECCA G, et al. Modeling and analysis of seawater intrusion in the coastal aquifer of easter Cap-Bon[J]. Transport Porous Media, 2001, 43: 3-28. DOI: 10.1023/A:1010600921912
|
[3] |
崔相飞, 周训, 徐中平, 等. 海岸带咸淡水界面的研究进展[J]. 水文地质工程地质, 2018, 45(2): 29-35. DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.05
CUI X F, ZHOU X, XU Z P, et al. Advances in research on the fresh water-salt water interface in coastal zones[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 29-35. (in Chinese). DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.05
|
[4] |
钟乐乐, 曾献奎, 吴吉春. 基于高斯过程回归的地下水模型结构不确定性分析与控制[J]. 水文地质工程地质, 2019, 46(1): 1-10. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.01
ZHONG L L, ZENG X K, WU J C. Quantification and reduction of groundwater model structuraluncertainty based on Gaussian process regression[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 1-10. (in Chinese). DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.01
|
[5] |
ZENG X K, WU J C, WANG D, et al. Assessing the pollution risk of a groundwater source field at western Laizhou Bay under seawater intrusion[J]. Environmental Research, 2016, 148: 586-594. DOI: 10.1016/j.envres.2015.11.022
|
[6] |
赵洁, 林锦, 吴剑锋, 等. 大连周水子海水入侵区地下水多目标优化管理模型[J]. 水文地质工程地质, 2017, 44(5): 25-32. DOI: 10.16030/j.cnki.issn.1000-3665.2017.05.05
ZHAO J, LIN J, WU J F, et al. Numerical simulation-optimization for optimal control of seawater intrusion in Zhoushuizi district of Dalian[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 25-32. (in Chinese). DOI: 10.16030/j.cnki.issn.1000-3665.2017.05.05
|
[7] |
SONG J, YANG Y, WU J F, et al. Adaptive surrogate model based multiobjective optimization for coastal aquifer management[J]. Journal of Hydrology, 2018, 561: 98-111. DOI: 10.1016/j.jhydrol.2018.03.063
|
[8] |
YANG Y, WU J F, LIN J, et al. An efficient simulation-optimization approach for controlling seawater intrusion[J]. Journal of Coastal Research, 2018, 84: 10-18. DOI: 10.2112/SI84-002.1
|
[9] |
YECHIELI Y, SHALEV E, WOLLMAN S, et al. Response of the mediterranean and dead sea coastal aquifers to sea level variations[J]. Water Resources Research, 2010, 46(12): W12550. DOI: 10.1029/2009WR008708.
|
[10] |
ESSINK GHPO. Impact of sea level rise on groundwater flow regimes. A sensitivity analysis for the Netherlands[C]// 428. Ph. D. thesis, Delft University of Technology, Delft, Delft Studies in Integrated Water Management, 1996.
|
[11] |
SHERIF MM, SINGH VP. Effect of climate change on seawater intrusion in coastal aquifers[J]. Hydrological Processes, 1999, 13(8): 1277-1287. DOI:10.1002/(SICI)1099-1085(19990615)13:8<1277.
|
[12] |
WERNER AD, SIMMONS CT. Impact of sea-level rise on seawater intrusion in coastal aquifers[J]. Ground Water, 2009, 47(2): 197-204. DOI: 10.1111/j.1745-6584.2008.00535.x.
|
[13] |
SANFORD WE, POPE JP. Current challenges using models to forecast seawater intrusion: lessons from the Eastern Shore of Virginia, USA[J]. Hydrogeology Journal, 2010, 18(1): 73-93. DOI: 10.1007/s10040-009-0513-4.
|
[14] |
SEFELNASR A, SHERIF M. Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer, Egypt[J]. Ground Water, 2014, 52(2): 264-276. DOI: 10.1111/gwat.12058
|
[15] |
XIAO H, WANG D B, HAGEN S C, et al. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)[J]. Hydrogeology Journal, 2016, 24(7): 1791-1806. DOI: 10.1007/s10040-016-1437-4
|
[16] |
HUGMAN R, STIGTER T, COSTA L, et al. Numerical modelling assessment of climate-change impacts and mitigation measures on the Queren?a-Silves coastal aquifer (Algarve, Portugal)[J]. Hydrogeology Journal, 2017, 25(7): 2105-2121. DOI: 10.1007/s10040-017-1594-0
|
[17] |
GREEN N R, MACQUARRIE K T B. An evaluation of the relative importance of the effects of climate change and groundwater extraction on seawater intrusion in coastal aquifers in Atlantic Canada[J]. Hydrogeology Journal, 2014, 22(3): 609-623. DOI: 10.1007/s10040-013-1092-y
|
[18] |
CARNEIRO J F, BOUGHRIBA M, CORREIA A, et al. Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model[J]. Environmental Earth Sciences, 2010, 61(2): 241-252. DOI: 10.1007/s12665-009-0339-3
|
[19] |
UNSAL B, YAGBASAN O, YAZICIGIL H. Assessing the impacts of climate change on sustainable management of coastal aquifers[J]. Environmental Earth Sciences, 2014, 72(6): 2183-2193. DOI: 10.1007/s12665-014-3130-z
|
[20] |
ZHAO J, LIN J, WU J F, et al. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City in Northern China[J]. Environmental Earth Sciences, 2016, 75(9): 1-18.
|
[21] |
赵洁, 林锦, 吴剑锋, 等. 大连周水子地区海水入侵数值模型[J]. 南京大学学报(自然科学版), 2016, 52(3): 479-489.
ZHAO J, LIN J, WU J F, et al. Numerical modeling of seawater intrusion in Zhoushuizi District of Dalian City, China[J]. Journal of Nanjing University (Natural Sciences), 2016, 52(3): 479-489. (in Chinese).
|
[22] |
薛禹群, 吴吉春, 谢春红, 等. 莱州湾沿岸海水入侵及咸水运移研究[J]. 科学通报, 1997, 42(22): 2360-2367.
XUE Y Q, WU J C, XIE C H, et al. The research of seawater intrusion and saltwater transport in the southern coast of Laizhou Bay[J]. Chinese Science Bulletin, 1997, 42(22): 2360-2367. (in Chinese).
|
[23] |
LANGEVIN C D, SHOEMAKER W B, GUO W. MODFLOW-2000, the U. S. Geological Survey Modular Ground Water Model-Documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS Transport Process (IMT)[R]. U S: Geological Survey Open File Report, 2003.
|
[24] |
TAYLOR K E, DOUTRIAUX C, PETERSCHMITT J. Climate model output rewriter (CMOR)[R]. Office of Scientific and Technical Information (OSTI), 2004. DOI: 10.2172/15014202.
|
[25] |
TAYLOR K E, DOUTRIAUX C, PETERSCHMITT J. Climate model output rewriter (CMOR)[R]. Office of Scientific and Technical Information (OSTI), 2004. DOI: 10.2172/15014202.
|
[26] |
TAYLOR K E, STOUFFER R J, MEEHL G A. A summary of the CMIP5 experiment design[M]. PCDMI Report, 2009: 33.
|
[27] |
TAYLOR K E, STOUFFER R J, MEEHL G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012, 93(4): 485-498. DOI: 10.1175/BAMS-D-11-00094.1
|
[28] |
吴其重, 冯锦明, 董文杰, 等. BNU-ESM模式及其开展的CMIP5实验介绍[J]. 气候变化研究进展, 2013, 9(4): 291-294.
WU Q C, FENG J M, DONG W J, et al. Introduction of the CMIP5 experiments carried out by BNU-ESM[J]. Advances in Climate Change, 2013, 9(4): 291-294. (in Chinese).
|
[29] |
HIBBARD K A, MEEHL G A, COX P M, et al. A strategy for climate change stabilization experiments[J]. Eos, Transactions American Geophysical Union, 2007, 88(20): 217-221. http://web.stanford.edu/group/emf-research/docs/CCIIA/2013/7-31/Moss%20A%20Strategy%20for%20Climate%20Change%20Stabilization%20Experiments.pdf
|
[30] |
MEEHL G A, HIBBARD K A. A strategy for climate change stabilization experiments with AOGCMS and ESMS[C]// World Climate Research Programme. WCRP Informal Report No. 3, ICPO Publication No. 112, IGBP Report No. 57. Geneva, 2007.
|