ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
WANG Zhongliang, GUO Chunyan, ZHANG Yanpeng. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 27-35. DOI: 10.16030/j.cnki.issn.1000-3665.202002004
Citation: WANG Zhongliang, GUO Chunyan, ZHANG Yanpeng. Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 27-35. DOI: 10.16030/j.cnki.issn.1000-3665.202002004

Characteristics of hydrogen and oxygen isotopes in the groundwater and formation mode of the Beihai springs in the northern Laiyuan Basin

More Information
  • Received Date: February 03, 2020
  • Revised Date: May 11, 2020
  • Available Online: January 12, 2021
  • Published Date: January 12, 2021
  • As the source of the Jumahe River, the Juma springs has received the attention of many experts and scholars. Previous studies focused mainly on the chemical and dynamic characteristics of the groundwater and the spring discharge characteristics, the hydrogen and oxygen isotopes characteristics were seldom examined, and the explanation of the causes of the Beihai springs was only a rough qualitative overview. To illustrate the characteristics of hydrogen and oxygen isotopes of the groundwater in the northern Laiyuan Basin and reveal the forming mode of the Beihai springs in detail, groundwater samples in different aquifers were systematically collected for the first time in the study are area and the hydrogen and oxygen isotopic components were determined in this paper. The results show that the values of δD and δ18O in the water samples fall on or near the regional meteoric water line, indicating that the meteoric water is the main recharge source of the groundwater. The altitude effect is obvious and the groundwater flow path is long for the groundwater in the dolomite aquifer and limestone aquifer, the groundwater flow path is short and the evaporation effect is strong for the groundwater in the unconsolidated sediment aquifer. The deuterium excess of the sample in the dolomite aquifer, limestone aquifer and unconsolidated sediment aquifer are 6.0‰−11.6‰, 4.2‰−11.2‰ and 3.8‰−8.0‰, respectively, much smaller than that in the meteoric water, showing that the karst water and the pore water undergo different processes. When the groundwater in the dolomite aquifer and limestone aquifer flows from the recharge areas to the discharge areas, hydraulic connection and mixing occur in the fault zone near Xiaoxizhuang and Xianglutun. Groundwater rises during the process of flow to the center of the basin because of the resistance effect of the fault, and groundwater in the dolomite aquifer and limestone aquifer is subsequently recharged by the pore water in the unconsolidated sediment aquifer, at last the groundwater emerges on the ground surface in the form of springs as the Beihai springs. Before the pore water joins in, the average recharge comes from the limestone aquifer and dolostone aquifer is about 48.4%−57.6% and 42.4%−51.6%, respectively.
  • [1]
    吴兴礼, 齐宗汉, 戴国梓, 等. 中国北方岩溶地下水资源及大水矿区岩溶水的预测、利用与管理的研究[R]. 石家庄: 河北省地质矿产局第一水文地质工程地质大队, 1988.

    WU Xingli, QI Zonghan, DAI Guozi, et al. Research on forecast, utilization and management of karst groundwater resources in north China and karst groundwater in the abundant water mining area[R]. Shijiazhuang: The First Institute of Hydrogeology and Engineering Geology of Hebei Bureau of Geology and Mineral Resources Exploration, 1988. (in Chinese)
    [2]
    杨旭东, 马学军, 李伟. 涞源县拒马源泉群地质遗迹保护和开发利用评价报告[R]. 保定: 中国地质调查局水文地质环境地质调查中心, 2007.

    YANG Xudong, MA Xuejun, LI Wei. Protection, development and utilization of Juma spring groups geological relics in Laiyuan[R]. Baoding: Center for Hydrogeology and Environmental Geology, 2007. (in Chinese)
    [3]
    李玉龙, 朱小龙, 谷明旭, 等. 涞源盆地地下水动态特征分析[J]. 科技传播,2013,5(11):108 − 109. [LI Yulong, ZHU Xiaolong, GU Mingxu, et al. Analysis of groundwater dynamic feature in the Laiyuan Basin[J]. Public Communication of Science & Technology,2013,5(11):108 − 109. (in Chinese with English abstract)
    [4]
    贾春义. 涞源泉域岩溶水化学研究[J]. 勘察科学技术,1996(1):24 − 29. [JIA Chunyi. Karst water chemistry study in Laiyuan spring field[J]. Site Investigation Science and Technology,1996(1):24 − 29. (in Chinese with English abstract)
    [5]
    李志先. 利用降水量推算涞源泉流量方法的探讨[J]. 水文地质工程地质,1984(2):48 − 50. [LI Zhixian. Disseussion on caleurlation methods of spring volume by using the precipitation data[J]. Hydrogeology & Engineering Geology,1984(2):48 − 50. (in Chinese)
    [6]
    王海宁, 乔光建. 涞源岩溶地下水系统泉水量变化特征分析[J]. 南水北调与水利科技, 2011, 9(6): 54−57.

    WANG Hainig, QIAO Guangjian. Variations of spring volume of the karst groundwater system in the Laiyuan Region[J]. South-to-North Water Diversion and Water Science & Technology, 2011, 9(6): 54−57.(in Chinese with English abstract)
    [7]
    马剑飞, 李伟, 刘蕴, 等. 涞源盆地地下水化学演化特征初步分析[J]. 南水北调与水利科技, 2014, 12(5): 141−146.

    MA Jianfei, LI Wei, LIU Yun, et al. Preliminary analysis of groundwater chemistry evolution in Laiyuan basin[J]. South-to-North Water Transfers and Water Science & Technology, 2014, 12(5): 141−146. (in Chinese with English abstract)
    [8]
    王新峰, 刘蕴, 李伟, 等. 涞源盆地水文地质特征及缺水现状分析[J]. 南水北调与水利科技, 2012, 10(6): 74−78.

    WANG Xinfeng, LIU Yun, LI Wei, et al. Analysis of hydrogeological conditions and water shortage status in the Laiyuan basin[J]. South-to-North Water Diversion and Water Science & Technology, 2012, 10(6): 74−78. (in Chinese with English abstract)
    [9]
    朱平, 李景豪, 陈佰太. 河北省涞源盆地遥感图像断裂构造解译及水文地质意义分析[R]. 保定: 地质部水文地质工程地质技术方法研究所, 1981.

    ZHU Ping, LI Jinghao, CHEN Baitai. Interpret linear structures of remote sensing image and analysis hydrogeological significance in the Laiyuan Basin[R]. Baoding: Institute of Hydrogeology and Engineering Geology Techniyues, 1981. (in Chinese)
    [10]
    郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13): 801−806.

    ZHENG Shuhui, HOU Fagao, NI Baoling. Research on Stable Hydrogen and Oxygen Isotopes of Atmospheric Precipitation in my country [J]. Chinese Science Bulletin, 1983, 28(13): 801−806. (in Chinese)
    [11]
    GREMILLION P, WANIELISTA M. Effects of evaporative enrichment on the stable isotope hydrology of a central Florida (USA) river[J]. Hydrological Processes,2000,14(8):1465 − 1484. DOI: 10.1002/1099-1085(20000615)14:8<1465::AID-HYP987>3.0.CO;2-6
    [12]
    袁建飞. 广东沿海地热系统水文地球化学研究[D]. 武汉: 中国地质大学(武汉), 2013: 61−65.

    YUAN Jianfei. Hydrogeochemistry of the geothermal systems in coastal areas of Guangdong Province, South China[D]. Wuhan: China University of Geosciences (Wuhan), 2013: 61−65. (in Chinese with English abstract)
    [13]
    魏静文. 华北平原地下水与地表水的水文地球化学及氢氧同位素特征分析[D]. 北京: 中国地质大学(北京), 2012: 28−29.

    WEI Jingwen. Analysis of hydrogeochemistry and stable isotopes of surface water and groundwater in North China Plain[D]. Beijing: China University of Geosciences (Beijing), 2012: 28−29. (in Chinese with English abstract)
    [14]
    侯光才, 苏小四, 林学钰, 等. 鄂尔多斯白垩系地下水盆地天然水体环境同位素组成及其水循环意义[J]. 吉林大学学报(地球科学版),2007,37(2):255 − 260. [HOU Guangcai, SU Xiaosi, LIN Xueyu, et al. Environmental isotopic composition of natural water in Ordos Cretaceous Groundwater Basin and its significance for hydrological cycle[J]. Journal of Jilin University(Earth Science Edition),2007,37(2):255 − 260. (in Chinese with English abstract)
    [15]
    柳富田. 基于同位素技术的鄂尔多斯白垩系盆地北区地下水循环及水化学演化规律研究[D]. 长春: 吉林大学, 2008: 46−47.

    LIU Futian. Research on groundwater circulation and hydrochemical transport in the northern part of Ordos Cretaceous Basin based on isotope technology[D]. Changchun: Jilin University, 2008: 46−47. (in Chinese with English abstract)
    [16]
    MARFIA A M, KRISHNAMURTHY R V, ATEKWANA E A, et al. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America[J]. Applied Geochemistry,2004,19(6):937 − 946. DOI: 10.1016/j.apgeochem.2003.10.013
    [17]
    FRIEDMAN I, SMITH G I, GLEASON J D, et al. Stable isotope composition of waters in southeastern California: Modern precipitation[J]. Journal of Geophysical Research Atmospheres,1992,97(5):5795 − 5812. DOI: 10.1029/92JD00184
    [18]
    张之淦. 同位素水文地质概论(油印本)[M]. 1984.

    ZHANG Zhigan. Introduction to Isotope Hydrogeology(Mimeo) [M]. 1984. (in Chinese)
    [19]
    王东升, 徐乃安. 中国同位素水文地质学之进展[M]. 天津: 天津大学出版社, 1993: 5−11.

    WANG Dongsheng, XU Nai'an. The progress of isotope hydrogeology in China[M]. Tianjin: Tianjin University Press, 1993: 5−11. (in Chinese)
    [20]
    刘存富, 王恒纯. 环境同位素水文地质学基础(选修课教材)[M]. 1984.

    LIU Cunfu, WANG Hengchun. Environmental isotopic general hydrogeology (textbook for optional course) [M]. 1984. (in Chinese)
    [21]
    尹观, 倪师军. 地下水氘过量参数的演化[J]. 矿物岩石地球化学通报,2001,20(4):409 − 411. [YIN Guan, NI Shijun. Deuterium excess parameter evolution in ground water[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2001,20(4):409 − 411. (in Chinese with English abstract) DOI: 10.3969/j.issn.1007-2802.2001.04.057
    [22]
    Mebus A G, 顾慰祖, 刘涌, 等. 阿拉善高原地下水的稳定同位素异常[J]. 水科学进展,1998,9(4):333 − 337. [Mebus A G, GU Weizu, LIU Yong, et al. Isotopically anomalous groundwater of Alxa plateau, Inner Mongolia[J]. Advances water Sciences,1998,9(4):333 − 337. (in Chinese with English abstract)
    [23]
    晁念英, 王佩仪, 刘存富, 等. 河北平原地下水氘过量参数特征[J]. 中国岩溶,2004,23(4):335 − 338. [CHAO Nianying, WANG Peiyi, LIU Cunfu, et al. Characteristic of deuterium excess parameter of groundwater in Hebei plain[J]. Carsologica Sinica,2004,23(4):335 − 338. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-4810.2004.04.013
    [24]
    蒲俊兵. 重庆岩溶地下水氢氧稳定同位素地球化学特征[J]. 地球学报, 2013, 34(6): 713−722.

    PU Junbing. Hydrogen and oxygen isotope geochemistry of karst groundwater in Chongqing[J]. Acta Geoscientica Sinica, 2013, 34(6): 713−722. (in Chinese with English abstract)
    [25]
    宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学(D辑: 地球科学),2007,37(1):102 − 110. [SONG Xianfang, LIU Xiangchao, XIA Jun, et al. A study of interaction between surface water and ground-water using environmental isotope in Huaisha River basin[J]. Science in China (Series D: Earth Sciences),2007,37(1):102 − 110. (in Chinese with English abstract)
    [26]
    宋献方, 李发东, 于静洁, 等. 基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J]. 地理研究,2007,26(1):11 − 21. [SONG Xianfang, LI Fadong, YU Jingjie, et al. Characteristics of groundwater cycle using deuterium, oxygen-18 and hydrochemistry in Chaobai River Basin[J]. Geographical Research,2007,26(1):11 − 21. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0585.2007.01.002
    [27]
    Mebus A G, GU W Z, LIU Y, et al. Isotopically anomalous groudwater of Alxa Plateau, Inner Mongolia[J]. Advances in Water Science,1998,9(4):333 − 337.
  • Related Articles

    [1]ZENG Lifeng, SHAO Longtan, NIU Geng, GUO Xiaoxia. An effective stress equation for unsaturated silt considering the microstructure of pore water and its verification[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 37-46. DOI: 10.16030/j.cnki.issn.1000-3665.202110023
    [2]REN Kun, PAN Xiaodong, JIAO Youjun, HUANG Yu, ZENG Jie, PENG Cong, LIANG Jiapeng. Characteristics and controls of the hydrochemistry and carbon isotope of the spring water in the Hongjiadu Basin of Guizhou[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 9-17. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.02
    [3]YE Junneng, ZHOU Ye, ZHU Yaohong, LIU Ganbin. A study of the excess pore water pressure during pile-sinking construction of nodular pile composite foundation[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 103-110. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.14
    [4]ZANGHongfei, . Source of ?SO2-4?in karst groundwater in the Liulin spring area[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 9-15.
    [5]LIJing, . Determination of chemical compositions of pore water in clayrich formations using geochemical modeling[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 1-8.
    [6]GUOChun-qing, . A comprehensive forecast of water inflow in karst tunnels——Exemplified by the Zhujiayan karst tunnel[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 1-8.
    [7]ZENGCheng, . Wavelet analysis of the intensity of diurnal hydrochemical variation of karst water systems under different land use conditions[J]. Hydrogeology & Engineering Geology, 2011, 38(1): 86-93.
    [8]HELei, . Effects of pore water in shear strength of weathered red mudstone in Lanzhou area,China[J]. Hydrogeology & Engineering Geology, 2010, 37(3): 48-52.
    [9]MEIYi, . A study of the seepage flow model of a pumped storage power station in northeastern China based on FEMWATER[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 1-5.
    [10]LIUYun-tao~, . Study on dissipation law of pore water pressure in strengthening soft foundation by vacuum-surcharge preloading[J]. Hydrogeology & Engineering Geology, 2008, 35(2): 71-75.
  • Cited by

    Periodical cited type(4)

    1. 许金昭,刘桂建,司雯,刘锐佳,王冠宇. 安徽涡河流域水化学与同位素特征及水体转化关系. 环境科学. 2024(06): 3196-3204 .
    2. 韩鹏飞,王旭升,蒋小伟,万力. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应. 水文地质工程地质. 2023(02): 1-12 . 本站查看
    3. 黄静,肖先煊,许模,李兆峰. 车马碧引水隧洞近场区水文地球化学特征及成因浅析. 四川地质学报. 2023(04): 638-647 .
    4. 贾俊,王亮,孟云涛. 吉木萨尔超排液氢氧同位素特征及地下水含量计算. 水文地质工程地质. 2022(04): 10-18 . 本站查看

    Other cited types(3)

Catalog

    Article views (661) PDF downloads (294) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return