ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
GUOJingyun, . Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 24-34. DOI: 10.16030/j.cnki.issn.1000-3665.202003054
Citation: GUOJingyun, . Advances in the chemical dissolution methods of soluble rocks[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 24-34. DOI: 10.16030/j.cnki.issn.1000-3665.202003054

Advances in the chemical dissolution methods of soluble rocks

More Information
  • Received Date: March 09, 2020
  • Revised Date: May 04, 2020
  • Published Date: September 09, 2020
  • A large number of people live in areas with soluble rocks in China. Due to the existence of caves, fissures, holes, pipes and other erosion phenomena in soluble rocks, geological disasters such as mountain landslides and collapse, ground collapse, floods, etc, are often induced in the soluble rocks. It is important to study the chemical dissolution rate of soluble rocks to predict the development of karst and to guarantee the early identification and safety evaluation of karst geological disasters. Based on a large number of literature surveys, this paper comprehensively analyzes chemical dissolution methods obtained by scholars at home and abroad.(1)Chemical dissolution methods of soluble rocks are constantly maturing and improving, and the depth of research and the scope of application are continuously expanding.(2) There are various methods to study rock dissolution, which are mainly divided into indoor dissolution tests and field dissolution tests. Among them, the standard dissolution test strip method is widely used.(3) The principles and applicability of existing methods are different. It is necessary to use multiple test methods to gain relatively reliable test results.According to the research status of this scientific issue, the next step will focus on large-scale dissolution indoor test, establish model test systems to truly simulate the dissolution process of the soluble rock and further describe the dissolution process of soluble rocks in microscopic perspective. In addition, it is necessary to comprehensively use a variety of field test methods to carry out research to avoid or reduce the large errors that may be caused by a single test method, and establish correlations between field dissolution tests and indoor corrosion tests, so as to inferring results of large time scale tests in field through short-term indoor tests.
  • [1]
    [1]袁道先,蒋勇军,沈立成,等.现代岩溶学[M].北京:科学出版社,2016:13-45.

    [YUAN D X, JIANG Y J, SHEN L C, et al. Modern karstology[M].Beijing: Science Press,2016: 13-45.(in Chinese)]
    [2]
    [2]李大通,罗雁.中国碳酸盐岩分布面积测量[J].中国岩溶,1983,2(2): 147-150.

    [LI D T,LUO Y. Measurement of the distribution area of carbonate rocks in China[J].Carsologica Sinica, 1983,2(2): 147-150.(in Chinese)]
    [3]
    [3]袁道先.中国岩溶[M].北京:地质出版社,1993:1-20.

    [YUAN D X. Karst in China[M]. Beijing: Geological Publishing House, 1993:1-20.(in Chinese)]
    [4]
    [4]韩行瑞.岩溶水文地质学[M].北京:科学出版社,2015: 13-20.[HAN X R. Karst hydrogeology[M]. Beijing: Science Press, 2015:13-20.(in Chinese)]
    [5]
    [5]李滨,冯振,张勤,等.岩溶山区特大崩滑灾害成灾模式与早期识别研究[M].北京:科学出版社,2016:23-46.

    [LI B, FENG Z, ZHANG Q, et al. Study on the disaster model and early identification of the mega-avalanche disaster in karst mountain area[M].Beijing: Science Press,2016:23-46.(in Chinese)]
    [6]
    [6]卢耀如. 喀斯特发育机理与发展工程建设效应研究方向[J].地球学报,2016,37(4):419-432.

    [LU Y R. Karst development mechanism and research directions of developing engineering construction effect[J]. Acta Geoscientica Sinica, 2016,37(4):419-432.(in Chinese)]
    [7]
    [7]张少波,简文彬,洪儒宝,等.水位波动条件下覆盖型岩溶塌陷试验研究[J]. 工程地质学报, 2019,27(3): 659-667.

    [ZHANG S B, JIAN W B, HONG R B, et al. Experimental study on collapse of covered karst under water-level fluctuation[J]. Journal of Engineering Geology, 2019,27(3): 659-667.(in Chinese) ]
    [8]
    [8]刘琦,白友恩,顾展飞,等.石漠化地区石灰岩和白云岩的溶蚀-蠕变特性试验研究——以贵州贞丰-关岭花江岩溶区为例[J].桂林理工大学学报,2017,37(3):399-404.

    [LIU Q, BAI Y E, GU Z F, et al.Experiment on dissolution-creep characteristics of limestone and dolomite in rocky desertification: a case study of Zhenfeng-Guanling Huajiang karst region in Guizhou[J].Journal of Guilin University of Technology, 2017,37(3):399-404.(in Chinese)]
    [9]
    [9]曹贤发,刘之葵,李海玲.西南岩溶区建筑地基溶蚀程度深度分布规律[J].桂林理工大学学报,2016,36(2):253-259.

    [CAO X F, LIU Z K, LI H L.Dissolution distribution rules with depth at building ground in southwestern karst area,China[J]. Journal of Guilin University of Technology, 2016, 36(2):253-259.(in Chinese)]
    [10]
    [10]DELLE ROSE M,FEDERICO A, PARISE M.Sinkhole genesis and evolution in Apulia, and their interrelations with the anthropogenic environment[J]Natural Hazards and Earth System Sciences,2004,4(5/6): 747-755.
    [11]
    [11]JOHNSON K S.Subsidence hazards due to evaporite dissolution in the United States[J].Environmental Geology,2005,48(3):395-409.
    [12]
    [12]FORD D, WILLIAMS P. Karst hydrogeology and geomorphology[M]. England: John Wiley & Sons Ltd.,2007:1-50.
    [13]
    [13]TSYKIN R A. Karst sibiri[M]. Krasnoyarsk: Krasnoyarsk University Publishing House,1990:2-10.
    [14]
    [14]GAMS I. International comparative measurement of surface solution by means of standard limestone tablets[J]. Zbornik Ivana Rakovica, 1985, 4 (26): 361-386.
    [15]
    [15]GAMS I. Systems of adapting the littoral Dinaric Karst to agrarian land use[J]. Actageographica,1991, 31:5-106.
    [16]
    [16]GAMS I. Origin of the term “karst,” and the transformation of the classical karst (kras)[J]. Environmental Geology, 1993,21:110-114.
    [17]
    [17]GAMS I. Types of contact karst[J]. Geografia Fisica e Dinamica Quateraria, 1994,17: 37-46.
    [18]
    [18]罗明明,周宏,陈植华.香溪河流域岩溶水循环规律[M].北京:科学出版社,2018: 11-26.

    [LUO M M, ZHOU H, CHEN Z H. Regularity of karst water cycle in Xiangxi River Basin[M].Beijing: Science Press,2018:11-26.(in Chinese)]
    [19]
    [19]DAY M. Carbonate erosion rates in Southwestern Wisconsin[J]. Physical Geography, 1984,5(2): 142-149.
    [20]
    [20]PLAN L. Factors controlling carbonate dissolution rates quantified in a field test in the Austrian alps[J]. Geomorphology,2005, 68:201-212
    [21]
    [21]陈如冰,罗明明,罗朝晖,等.三峡地区碳酸盐岩化学组分与溶蚀速率的响应关系[J].中国岩溶,2019,38(2):258-264.

    [CHEN R B, LUO M M, LUO Z H, et al. Response relationship between chemical composition and dissolution rate of carbonate rocks in the Three Gorges Area[J].Carsologica Sinica, 2019,38(2):258-264.(in Chinese)]
    [22]
    [22]何宇彬,金玉璋,李康.碳酸盐岩溶蚀机理研究[J].中国岩溶,1984,3(2):12-16.

    [HE Y B, JIN Y Z, LI K.Anexperimental study of carbonate rock corrosion mechanism[J].Carsologica Sinica, 1984,3(2):12-16.(in Chinese)]
    [23]
    [23]陈晓鹏,张中俭,张彬. 淋雨对桂林鲕粒灰岩溶蚀机理的实验研究[J].工程地质学报, 2019,27(3): 516-524.

    [CHEN X P, ZHANG Z J, ZHANG B. Experimental study on dissolution mechanism of oolitic limestone in Guilin under attack of simulated rain[J]. Journal of Engineering Geology, 2019,27(3): 516-524.(in Chinese)]
    [24]
    [24]孙平安,李秀存,于奭,等.酸雨溶蚀碳酸盐岩的源汇效应分析——以广西典型岩溶区为例[J].中国岩溶,2017, 36(1):101-108.

    [SUN P A, LI X C, YU S, et al. Study on source-sink effect in the process of carbonate rock dissolved by acid rain: An example of typical karst regions in Guangxi[J].Carsologica Sinica,2017,36(1):101-108.(in Chinese)]
    [25]
    [25]黄奇波,覃小群,程瑞瑞,等.硫酸型酸雨参与碳酸盐岩溶蚀的研究进展[J].中国岩溶,2019,38(2):149-156.

    [HUANG Q B, QIN X Q, CHENG R R, et al. Research progress of sulfuric acid rain participating in the dissolution of carbonate rocks[J].Carsologica Sinica, 2019,38(2):149-156.(in Chinese)]
    [26]
    [26]范周周,卢舒瑜,李志茹,等.岩溶与非岩溶地区不同林分根际土壤微生物对碳酸盐岩的溶蚀作用[J].应用与环境生物学报,2018,24(4):751-757.

    [FAN Z Z, LU S Y, LI Z R, et al. Roles of rhizospheric soil microbes of different forest stands in karst and non-karst areas in the dissolution of calcium carbonate[J].Chinese Journal of Applied Environmental Biology, 2018,24(4): 751-757.(in Chinese)]
    [27]
    [27]郭纯青,田西昭.岩溶隧道涌水量综合预测——以朱家岩岩溶隧道为例[J].水文地质工程地质,2011,38(3):1-8.

    [GUO C Q,TIAN X Z.A comprehensive forecast of water inflow in karst tunnels——Exemplified by the Zhujiayan karst tunnel[J].Hydrogeology & Engineering Geology,2011, 38(3):1-8.(in Chinese)]
    [28]
    [28]莫阳春,周晓军.侧部岩溶隧道围岩变形特征数值模拟分析[J].水文地质工程地质,2008,35(2):30-34.

    [MO Y C,ZHOU X J.Numerical simulation analysis on surrounding rock deformation characteristic of tunnel with karst cave beside[J].Hydrogeology & Engineering Geology, 2008, 35(2):30-34.(in Chinese)]
    [29]
    [29]罗明明,陈植华,周宏,等.岩溶流域地下水调蓄资源量评价[J].水文地质工程地质,2016,43(6):14-20.

    [LUO M M, CHEN Z H, ZHOU H, et al. Assessment of regulating groundwater resources in karst watersheds[J]. Hydrogeology & Engineering Geology,2016,43(6): 14-20.(in Chinese)]
    [30]
    [30]罗明明,肖天昀,陈植华,等.香溪河岩溶流域几种岩溶水系统的地质结构特征[J].水文地质工程地质,2014,41(6): 13-19.

    [LUO M M, XIAO T Y, CHEN Z H, et al. Geological structure characteristics of several karst water systems in the Xiangxi River Karst Basin[J].Hydrogeology & Engineering Geology,2014,41(6):13-19.(in Chinese)]
    [31]
    [31]WEYL P. The solution kinetics of calcite[J]. Journal of Geology, 1958,66(2): 163-176.
    [32]
    [32]NANCOLLAS G H, REDDY M M. The crystallization of calcium carbonate[J]. Journal of Colloid and Interface Science, 1971, 37(4):166-172.
    [33]
    [33]BERNER R A, MORSE J W. Dissolution kinetics of calcium carbonate in sea water: IV. Theory of calcite dissolution[J]. American Journal of Science, 1974,274(2): 108-134.
    [34]
    [34]PLUMMER L N, WIGLEY T L M. The dissolution of calcite in CO2-saturated solutions at 25 ℃ and l atmosphere total pressure[J]. Geochimica Et Cosmochimica Acta,1976, 40(2): 191-202.
    [35]
    [35]PLUMMER L N, WIGLEY T M L, PARKHURST D L. The kinetics of calcite dissolution in CO2-water systems at 5 deg to 60 deg c and 0.0 to1.0 atm CO2[J]. American Journal of Science, 1978, 278(2): 179-216.
    [36]
    [36]王洪涛,曹以临.碳酸盐岩溶蚀动力学模拟实验[J].中国岩溶,1988,7(1): 63.

    [WANG H T, CAO Y L. Simulation experiment of carbonate rock dissolution kinetics[J]. Carsologica Sinica, 1988,7 (1): 63.(in Chinese)]
    [37]
    [37]刘再华, DREYBRODT W.不同CO2分压条件下的白云岩溶解动力学机理[J].中国科学(B辑),2001,31(4): 377-384.

    [LIU Z H, DREYBRODT W. Kinetic mechanism of dolomite dissolution under different CO2 partial pressure conditions[J]. Science in China (Series B), 2001, 31(4): 377-384.(in Chinese)]
    [38]
    [38]闫志为,张志卫.氯化物对方解石和白云石矿物溶解度的影响[J].水文地质工程地质,2009, 36(1): 113-118.

    [YAN Z W, ZHANG Z W. Effect of chloride on the solubility of calcite and dolomite minerals[J]. Hydrogeological & Engineering Geology, 2009, 36(1): 113-118.(in Chinese)]
    [39]
    [39]邵东梅.华北典型煤矿区奥陶系碳酸盐岩溶蚀试验研究[D].西安:煤炭科学研究总院,2009.

    [SHAO D M. Experimental study on dissolution test of Ordovician carbonate rock in North-China typical coalfields[D]. Xi’an: China Coal Research Institute, 2009.(in Chinese)]
    [40]
    [40]邵东梅.不同水流速度下温度对奥陶系碳酸盐岩溶蚀速度的影响[J].煤田地质与勘探,2012, 40(3): 65-68.

    [SHAO D M. Influence of temperature on the dissolution rate in Ordovician carbonate rock in different water flow rate[J]. Coal Geology & Exploration, 2012, 40(3): 65-68.(in Chinese)]
    [41]
    [41]徐飞高,汤剑,高士祥.模拟酸雨对石灰岩的破坏和表面腐蚀[J].生态环境,2008, 17(6): 331-335.

    [XU F G, TANG J, GAO S X. Simulated acid rain damage to limestone and surface corrosion[J]. Ecology and Environment, 2008, 17(6): 331-335.(in Chinese)]
    [42]
    [42]陈卫昌,李黎,邵明申,等.酸雨作用下碳酸盐岩类文物的溶蚀过程与机理[J].岩土工程学报,2017, 39(11): 116-125.

    [CHEN W C, LI L, SHAO M S, et al. Experimental study on carbonate dissolution and erosion effect under attack of simulated sulphuric acid rain[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 116-125.(in Chinese)]
    [43]
    [43]苏悦.桂林市毛村流域碳酸盐岩溶蚀实验研究[D].北京:中国地质大学(北京),2018.

    [SU Y. Experimental research on carbonate rock erosion by the Maocun in Guilin[D]. Beijing: China University of Geosciences (Beijing), 2018.(in Chinese)]
    [44]
    [44]李钜章,林钧枢,房金福.喀斯特溶蚀强度分析与估算[J].地理研究,1994,13(3):90-97.

    [LI J Z, LIN J S, FANG J F. Analysis and estimation of the karst solutional intensity[J].Geographical Research, 1994,13(3):90-97.(in Chinese)]
    [45]
    [45]CORBEL J. A new method for the study of limestone regions[J]. Revue Canadienne de Geographie, 1956,10:240-242.
    [46]
    [46]CORBEL J. Les karsts du nord-ouest de I’Europe[Thèse de doctorate slettres, 5 juillet 1955][J]. L’information Géographique, 1956, 20(4):164-165.
    [47]
    [47]CORBEL J. Erosion en terrain calcaire[J]. Annales de Geographie,1959, 68: 97-120.
    [48]
    [48]WILLIAMSPW. An initial estimate of the speed of limestone solution in County Clare[J]. Irish Geography, 1963,4(6):432-441.
    [49]
    [49]曾成,赵敏,杨睿,等.岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较——以陈旗岩溶泉域为例[J].水文地质工程地质,2014,41(1):106-111.

    [ZENG C, ZHAO M, YANG R, et al.Comparison of karst processes-related carbon sink intensity calculatedby carbonate rock tablet test and solute load method: a case study in the Chenqi karst spring system[J].Hydrogeology & Engineering Geology, 2014,41(1):106-111.(in Chinese)]
    [50]
    [50]LUO M M, ZHOU H, LIANG Y P, et al.Horizontal and vertical zoning of carbonate dissolution in China[J].Geomorphology,2018,322:66-75.
    [51]
    [51]URUSHIBARA-YOSHINO K, MIOTKE F D, KASHIMA N, et al. Solution rate of limestone in Japan[J]. Physics and Chemistry of the Earth, Series A, 1999,24(10):899-903.
    [52]
    [52]袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988:5-18.

    [YUAN D X, CAI G H. Karst environmental science[M]. Chongqing: Chongqing Publishing House, 1988:5-18.(in Chinese)]
    [53]
    [53]袁道先,刘再华,林玉石,等.中国岩溶动力系统[M].北京:地质出版社,2002:20-35.

    [YUAN D X, LIU Z H, LIN Y S, et al. Karst dynamic system of China[M]. Beijing: Geological Publishing House,2002:20-35.(in Chinese)]
    [54]
    [54]梁永平,王维泰,段光武.鄂尔多斯盆地周边地区野外溶蚀试验结果讨论[J].中国岩溶,2007,26(4):315-320.

    [LIANG Y P, WANG W T, DUAN G W.Discussion on the result of field corrosion test around Erdos Basin[J]. Carsologica Sinica,2007,26(4):315-320 (in Chinese)]
    [55]
    [55]BGLI A. Karrentische, ein Beitragsur Karst morphologie[J]. Zeitschrift für Geomorphologie, 1961(5):185-193.
    [56]
    [56]PETERSON J A. Limestone pedestals and denudation estimates from Mt.Jaya, Irian Jaya[J].Australian Geographer,1982(15):170-173.
    [57]
    [57]HANNA F K. A technique for measuring the rate of erosion of cave passages[J].Proceedings University of Bristol Speleology Society, 1966,11:83-86.
    [58]
    [58]STEPHENSONW. The micro and traversing erosion meter[J]. Treatise on Geomorphology, 2013:164-169.
    [59]
    [59]STEPHENSON W J, FINLAYSON B L. Measuring erosion with the micro-erosion meter—Contributions to understanding landform evolution[J]. Earth-Science Reviews, 2009,95(1/2): 53-62.
    [60]
    [60]STEPHENSON W J, KIRK R M. Surface swelling of coastal bedrock on inter-tidal shore platforms, Kaikoura Peninsula, South Island, New Zealand[J]. Geomorphology,2001, 41: 5-21.
    [61]
    [61]STEPHENSON W J, TAYLOR A J, HEMMINGSEN M A, et al. Short-term microscale topographic changes of coastal bedrock on shore platforms[J]. Earth Surface Processes and Landforms, 2004, 29:1663-1673.
    [62]
    [62]TRENHAILE A. Tidal wetting and drying on shore platforms: An experimental study of surface expansion and contraction[J]. Geomorphology, 2006, 76:316-331.
    [63]
    [63]NICOD J. Karst et mines en France et en Europe[J].Karstologia,1996, 27(1):1-20.
    [64]
    [64]但新球,贺东北,吴协保,等.中国岩溶地区生态特征与石漠化危害探讨[J].中南林业调查规划,2018, 37(1): 62-66.

    [DAN X Q, HE D B, WU X B, et al. Ecological characteristics of karst areas in China and the hazard of rocky desertification[J]. Central South Forest Inventory and Planning, 2018, 37(1): 62-66.(in Chinese)]
  • Cited by

    Periodical cited type(7)

    1. 武亚遵,于江浩,林云,金毅,刘源,王雪奇. 碳酸盐岩裂隙溶蚀扩展试验与模拟研究. 水文地质工程地质. 2024(01): 41-46 . 本站查看
    2. 张国栋,夏文中,何钰铭,危灿. 三峡库区碳酸岩岸坡消落带岩体劣化特性. 山地学报. 2024(01): 70-80 .
    3. 张子翼,胡冉,廖震,陈益峰. 重力条件下粗糙裂隙溶蚀过程的可视化试验研究. 水文地质工程地质. 2023(02): 178-188 . 本站查看
    4. 罗振宇,杨琰,李计,肖文杰,孙婷婷,叶枝茂. 石漠化治理区表层岩溶泉流量衰减分析及无机碳通量估算——以重庆酉阳龙潭槽谷老泉为例. 中国岩溶. 2023(02): 337-350+381 .
    5. 姚春芝,高满,陈喜,刘秀强,高峰钧. 基于元分析的碳酸盐岩侵蚀速率及其影响因素研究. 地球与环境. 2023(04): 401-411 .
    6. 林云,任华鑫,武亚遵,贾方建,刘朋,梁家乐. 不同赋存环境下碳酸盐岩溶蚀过程试验模拟研究. 水文地质工程地质. 2021(02): 15-26 . 本站查看
    7. 陈建钢. 可溶岩地质下铁路勘察设计原则研究. 四川水泥. 2021(10): 150-151 .

    Other cited types(2)

Catalog

    Article views (6337) PDF downloads (749) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return