ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
ZHANGDong, . A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35-42. DOI: 10.16030/j.cnki.issn.1000-3665.202003065
Citation: ZHANGDong, . A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35-42. DOI: 10.16030/j.cnki.issn.1000-3665.202003065

A universal expression of the equivalent permeability of heterogeneous porous media

More Information
  • Received Date: March 19, 2020
  • Revised Date: May 11, 2020
  • Published Date: September 09, 2020
  • Flow and transport inside porous media is a common physical process, and it is related to subsurface engineering, geothermal energy extraction, environment engineering and so on. Due to the complexity of geological conditions, strata suffer diagenesis, compaction, weathering, biological effect, etc. The feature of permeability is rather complex, and numerical simulation is utilized to supply data and key information for engineering design and construction, with a larger amount of time and computation. However, the accuracy of simulation directly relies on the key parameters such as permeability. This paper aims to study the relationship of the equivalent permeability and permeability distribution function in the space of heterogeneous porous media. Based on the continuum assumption, Darcy’s law and permeability distribution function, the mathematical model of the Darcy seepage problem from 1D to 3D is established, and the theoretical solution of the equivalent permeability is obtained by solving the partial differential equation. Besides, the theoretical solution and the numerical solution are obtained by using finite element simulation. The results show that they are closed to each other, and the error is quite small, indicating that the expression of the equivalent permeability is correct and valid. The permeability distribution function can be established through multi-points permeability measurements of media, then the seepage properties of the whole porous media can be simulated and evaluated rapidly. The complex geological models are simplified to reduce the computation with the expressions. It is of great significance for the rapid simulation of engineering and the evaluation of simulation results.
  • [1]
    [1]王艳华,潘争伟,张劼,等.多孔连续介质渗透定律及其扩展[J].赤峰学院学报(自然科学版),2015,31(7):32-34.

    [WANG Y H, PAN Z W, ZHANG J, et al. Permeation law of porous continuous media and its extension[J]. Journal of Chifeng University (Natural Science Edition), 2015, 31(7): 32-34.(in Chinese)]
    [2]
    [2]黄琨.孔隙介质渗流基本方程的探索[D].武汉:中国地质大学(武汉),2012.

    [HUANG Q. Exploration of the fundamental equation of percolation in Porous Media[D]. Wuhan:China University of Geosciences (Wuhan), 2012.(in Chinese)]
    [3]
    [3]NGEL A, LOGASHENKO D, SCHRODER J B, et al. Aspects of solvers for large-scale coupled problems in Porous Media[J].Transport in Porous Media, 2019, 130(1):363-390.
    [4]
    [4]BILKE L, FLEMISCH B, KALBACHER T, et al.Development of open-source Porous Media simulators: principles and experiences[J]. Transport in Porous Media, 2019, 130:77-104.
    [5]
    [5]GERAMI A, ALZAHID Y, MOSTAGHIMI P, et al.Microfluidics for porous systems: fabrication, microscopy and applications[J]. Transport in Porous Media, 2019, 130:277-304.
    [6]
    [6]HERNANDEZ MA, ROJAS F, LARA V H. Nitrogen-sorption characterization of the microporous structure of clinoptilolite-type zeolites[J].Journal of Porous Materials, 2000, 7:443-454.
    [7]
    [7]WANG M R, WANG J K, PAN N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media[J]. Physical Review E(Statistical, Nonlinear, and Soft Matter Physics), 2007, 75(3):3-10.
    [8]
    [8]JAFARI A, BABADAGLI T. Estimation of equivalent fracture network permeability using fractal and statistical network properties[J]. Journal of Petroleum Science and Engineering, 2012, 92/93:110-123.
    [9]
    [9]AKER E, JRGEN MLY K, HANSEN A,et al.A two-dimensional network simulator for two-phase flow in porous media[J].Transport in Porous Media,1998, 32(2):163-186.
    [10]
    [10]雷健,潘保芝,张丽华.基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J].地球物理学进展,2018,33(2):653-660.

    [LEI J, PAN B Z, ZHANG L H. Research progress of micro-seepage simulation based on digital core and pore network model[J]. Progress in geophysics, 2018, 33(2): 653-660.(in Chinese)]
    [11]
    [11]郑启斌,高楚桥,赵彬.数字岩心建模方法及应用综述[J].能源与环保,2017,39(12):145-148.

    [ZHENG Q B, GAO C Q, ZHAO B. Overview of Digital Core Modeling Methods and Applications[J]. Energy and Environmental Protection, 2017, 39(12): 145-148.(in Chinese)]
    [12]
    [12]RAMSTAD T, BERG C F, THOMPSON K. Pore-scale simulations of single-and two-phase flow in porous media: approaches and applications[J].Transport in Porous Media, 2019, 130:77-104.
    [13]
    [13]BATTIATO I, FERREROV P T, MALLEY D O,et al. Theory and applications of macroscale models in porous media[J]. Transport in Porous Media, 2019, 130:5-76.
    [14]
    [14]SONG R, WANG Y, LIU J J, et al.Comparative analysis on pore-scale permeability prediction on micro-CT images of rock using numerical and empirical approaches[J]. Energy Science & Engineering, 2019, 7(6):2842-2854.
    [15]
    [15]LAI J, WANG G W, CAO J, et al. Investigation of pore structure and petrophysical property in tight sandstones[J]. Marine and Petroleum Geology, 2018, 91:179-189.
    [16]
    [16]HAO L, CHENG P. Pore-scale simulations on relative permeabilities of porous media by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2010, 53(9/10):1908-1913.
    [17]
    [17]SCHEIDEGGER A. Theoretical models of porous matter[J]. Producers Monthly, 1953, 17(10):17.
    [18]
    [18]BEAR J, ZASLAVSKY D, IRMAY S. Physical principles of water percolation and seepage[J]. Unesco Arid Zone Research, 1968, 29:465.
    [19]
    [19]FATT I. The networkmodel of fractured permeable media[J].Transactions of the American Institute of Mining and Metallurgical Engineers, 1965, 207:144-181.
    [20]
    [20]姚怡光,张云,孙铁,等.人工渗流场中的地下水流数值模拟[J].水力发电,2017,43(5):25-29.

    [YAO Y G, ZHANG Y, SUN T, et al. Numerical simulation of an artificial seepage field of groundwater[J].Water Power, 2017, 43(5):25-29.(in Chinese)]
    [21]
    [21]吕克璞.地下水渗流问题及其有限元数值模拟[J].西北师范大学学报(自然科学版),1998, 34(2):38-44.

    [LYU K Z. Groundwater seepage problem and its finite element numerical simulation[J]. Journal of Northwest Normal University (Natural Science), 1998, 34(2): 38-44.(in Chinese)]
    [22]
    [22]黄立明,陈征宙,张崇波,等.成层介质边坡渗流稳定性计算方法初步研究[J].水文地质工程地质,2015,42(3):59-63.

    [HUANG L M, CHEN Z Z, ZHANG C B, et al. A preliminary study of the calculation method for seepage stability in the layered slope[J]. Hydrogeology & Engineering Geology, 2015, 42(3):59-63.(in Chinese)]
    [23]
    [23]童少青,董艳辉,王礼恒.非结构化网格 MODFLOW 模拟方法与应用[J].水文地质工程地质,2016,43(2):9-16.

    [TONG S Q, DONG Y H, WANG L H. Methods and applications of an unstructured grid version of MODFLOW: MODFLOW-USG[J]. Hydrogeology & Engineering Geology, 2016,43(2):9-16.(in Chinese)]
    [24]
    [24]魏亚强,乔小娟,李国敏.MODFLOW 不同算法及参数设定对计算精度的影响[J].水文地质工程地质, 2015,42(1):14-21.

    [WEI Y Q, QIAO X J, LI G M.Influence on calculation accuracy caused by different algorithms and parameters in MODFLOW[J]. Hydrogeology & Engineering Geology, 2015,42(1):14-21.(in Chinese)]
    [25]
    [25]KOESTEL J, LARSBO M, JARVIS N. Scale and REV analyses forporosity and pore connectivity measures in undisturbed soil[J].Geoderma, 2020, 366:2-12.
    [26]
    [26]畅俊斌,柯贤敏,王玮,等.渗流井辐射管-含水层间水量交换数值模拟研究[J].水文地质工程地质,2018,45(5):1-8.

    [CHANG J B, KE X M, WANG W, et al. Numerical simulation of the water exchange between radiant tube and aquifer in a seepage well[J]. Hydrogeology & Engineering Geology, 2018, 45(5):1-8.(in Chinese)]
    [27]
    [27]杨昱.饱和非饱和渗流基本微分方程的推导[J].河南水利与南水北调,2015(14):76-79.

    [YANG W. Derivation of basic differential equations for saturated unsaturated seepage[J]. Henan Water Resources and South-to-North Water Transfer, 2015(14): 76-79.(in Chinese)]
    [28]
    [28]FRIEDMAN S P, SEATON N A. Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks[J]. Water Resources Research, 1998, 34(7):1703-1710.
  • Related Articles

    [1]MA Zihan, XING Huilin, JIN Guodong, TAN Yuyang, YAN Weichao, LI Sihai. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190-199. DOI: 10.16030/j.cnki.issn.1000-3665.202112010
    [2]LI Lulu, ZHOU Zhichao, SHAO Jingli, CUI Yali, ZHAO Jingbo. Advances in groundwater numerical simulation in deep geological disposal of high-level radioactive waste[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 13-23. DOI: 10.16030/j.cnki.issn.1000-3665.202010061
    [3]LYU Yonggao, CAI Wutian, YANG Li, BIAN Chao, LI Jingjie. A numerical simulation study of the position optimization of a pilot-scale permeable reactive barrier: a case study of the hexavalent chromium contaminated site[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 189-195. DOI: 10.16030/j.cnki.issn.1000-3665.201809023
    [4]ZHOUYanyi, . Numerical simulation of groundwater evaporation in the Badain Jaran Desert of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 44-54. DOI: 10.16030/j.cnki.issn.1000-3665.2019.05.07
    [5]XUYa, . Advances in numerical simulation methods of a "well-aquifer" system[J]. Hydrogeology & Engineering Geology, 2011, 38(4): 26-31.
    [6]YANGYun, . Numerical simulation of injected waste transport in the deep aquifer[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 6-11.
    [7]ZHAOBao-feng~(), . Application of intercepting underflow on groundwater exploitation based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2010, 37(1): 27-30.
    [8]SONGXin-yuan, . Numerical simulation of two-dimensional water waves due to landslide based on FLUENT[J]. Hydrogeology & Engineering Geology, 2009, 36(3): 90-94.
    [9]SHIYu-ling, . Numerical simulation of ground-fissure cracking and extending in Xi’an[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 56-60.
    [10]SHENYuan-yuan, . Research on disposal method of artifitial boundary condition in numerical simulation of groundwater flow[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 12-15.
  • Cited by

    Periodical cited type(10)

    1. 马占雄,闫福贵,李明,张青,韩婧,赵俊宾. 呼和坳陷白庙子凹陷热储特征与高产能地热井参数研究. 水文地质工程地质. 2025(02): 217-228 . 本站查看
    2. 何阳,杨贵花,李雪宇,周进,谭佳良,刘声凯,景营利,熊雄,刘一鸣,范毅,陈帅奇. 郴州市许家洞地区地热资源特征及资源量评价. 华南地质. 2024(01): 133-142 .
    3. 郑茹丹,熊超凡,平建华,苏向东,赵继昌,刘嘉麒. 太行山东南麓断裂带水文地球化学特征及水热成因模式. 水文地质工程地质. 2024(03): 43-56 . 本站查看
    4. 左玉妹,成建梅,赵锐锐,刘浩田,吴凡,谢先军,梁腾飞. 英山地热田区深大断裂的控水控热作用及地热系统成因研究. 水文地质工程地质. 2024(04): 220-232 . 本站查看
    5. 刘伟朋,李胜涛,贾小丰,岳冬冬,宋绵,张秋霞. 太行山区阜平县温泉水化学特征及成因分析. 中国矿业. 2024(09): 236-248 .
    6. 苏永强,吕冬冬,宋倩,齐恭,赵琳如,赵素杰. 张家口市地热资源赋存特征及形成机理研究. 华北地质. 2024(03): 97-106 .
    7. 王新伟,张漓黎,李善民. 广西杨梅冲地热田成因模式分析. 中国岩溶. 2024(04): 876-888+921 .
    8. 丁朋朋,贾超,王明珠,王辉,冯克印,魏茂杰. 鲁西北平原砂岩热储地热地质特征及成因模式. 世界地质. 2024(04): 608-618 .
    9. 汪新伟,郭世炎,高楠安,刘慧盈,王婷灏,魏广仁,雷海飞. 雄安新区牛东断裂带碳酸盐岩热储探测及其对地热勘探的启示. 地质通报. 2023(01): 14-26 .
    10. 刘小平,赵有美,张金鑫,吴爽. 沂沭断裂带地热资源特征及成因分析——以山东省临沂城区地热为例. 山东国土资源. 2023(06): 1-7 .

    Other cited types(0)

Catalog

    Article views (383) PDF downloads (721) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return