ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
SHI Honglei, HAO Qichen, SHAO Jingli, CUI Yali, ZHANG Qiulan. Research on hydrogeological parameter inversion of an aquitard based on multi-source data: A case study of a silt layer in the Hohhot Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 1-7. DOI: 10.16030/j.cnki.issn.1000-3665.202010013
Citation: SHI Honglei, HAO Qichen, SHAO Jingli, CUI Yali, ZHANG Qiulan. Research on hydrogeological parameter inversion of an aquitard based on multi-source data: A case study of a silt layer in the Hohhot Basin[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 1-7. DOI: 10.16030/j.cnki.issn.1000-3665.202010013

Research on hydrogeological parameter inversion of an aquitard based on multi-source data: A case study of a silt layer in the Hohhot Basin

More Information
  • Received Date: October 12, 2020
  • Revised Date: November 07, 2020
  • Available Online: March 11, 2021
  • Published Date: March 11, 2021
  • An aquitard is an important part of an aquifer system. It is always difficult to determine the hydrogeological parameters of the aquitard. Traditional laboratory tests are difficult to overcome the influence of stress state and environmental change on the aquitard layer parameters. Therefore, evaluation of hydrogeological parameters under in-situ state is of great significance. This article selects a silt layer in the Hohhot Basin, and primarily designs and carries out pumping tests and solute transport tests. The unstructured grid with the controlled volume finite difference method is used to establish a 3D coupling model of groundwater flow and solute transport. Groundwater levels and concentration data are used to estimate the hydrogeological parameters of the aquitard. The results show that the variation in groundwater levels and solute concentrations in the pumping wells calculated by the model can fit well with the actual observation data, and the coefficient of permeability of the pumping aquifer identified by the model (4.8 m/d) is similar to the analytical result (4.17 m/d). The numerical model conforms to the actual hydrogeological conditions. The vertical hydraulic conductivity of the aquitard studied in this paper is 1.2×10−4 m/d, and the specific storage is 1.0×10−5 m−1. The method presented in this paper may provide references for the parameter determination of an aquitard.
  • [1]
    陈晨, 文章, 梁杏, 等. 江汉平原典型含水层水文地质参数反演[J]. 地球科学,2017,42(5):727 − 733. [CHEN Chen, WEN Zhang, LIANG Xing, et al. Estimation of hydrogeological parameters for representative aquifers in Jianghan Plain[J]. Earth Science,2017,42(5):727 − 733. (in Chinese with English abstract)
    [2]
    程林, 韩龙喜, 刘晓华, 等. 一维地下水溶质运移模型多参数反演[J]. 水资源保护,2014,30(3):5 − 8. [CHENG Lin, HAN Longxi, LIU Xiaohua, et al. Multi-parameter inversion of one-dimensional groundwater solute transport model[J]. Water Resources Protection,2014,30(3):5 − 8. (in Chinese with English abstract)
    [3]
    杨建民, 郑刚. 用水位恢复数据反演越流承压含水层参数[J]. 岩土力学,2008,29(6):1602 − 1606. [YANG Jianmin, ZHENG Gang. Parameter estimation for leaky aquifers using residual drawdowns[J]. Rock and Soil Mechanics,2008,29(6):1602 − 1606. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2008.06.032
    [4]
    易立新, 徐鹤. 地下水数值模拟[M]. 北京: 化学工业出版社, 2009.

    YI Lixin, XU He. Numerical simulation of groundwater[M]. Beijing: Chemical Industry Press, 2009. (in Chinese)
    [5]
    EL OSTA M, HUSSEIN H, TOMAS K. Numerical simulation of groundwater flow and vulnerability in wadi el-natrun depression and vicinities, west Nile delta, Egypt[J]. Journal of the Geological Society of India,2018,92(2):235 − 247. DOI: 10.1007/s12594-018-0986-7
    [6]
    郝奇琛. 中国内陆盆地地下水流与水盐运移耦合模拟研究 : 以柴达木盆地典型剖面为例[D]. 北京: 中国地质大学(北京), 2015.

    HAO Qichen. Coupled modeling of salt movement and groundwater flow in inland basin: A case study in Qaidam basin, China[D]. Beijing: China University of Geosciences, 2015. (in Chinese with English abstract)
    [7]
    肖勇, 邵景力, 顾晓敏, 等. 北京昌平平原区地下水污染特征[J]. 南水北调与水利科技,2015,13(2):252 − 256. [XIAO Yong, SHAO Jingli, GU Xiaomin, et al. Characteristics of groundwater pollution in Changping Plain of Beijing[J]. South-to-North Water Transfers and Water Science & Technology,2015,13(2):252 − 256. (in Chinese with English abstract)
    [8]
    顾晓敏, 张戈, 郝奇琛, 等. 基于TOUGH2的柴达木盆地诺木洪剖面地下水流模拟[J]. 干旱区地理,2016,39(3):548 − 554. [GU Xiaomin, ZHANG Ge, HAO Qichen, et al. Application of TOUGH2 in groundwater numerical simulation of Qaidam Basin[J]. Arid Land Geography,2016,39(3):548 − 554. (in Chinese with English abstract)
    [9]
    陈晓恋, 张美雁, 文章, 等. 裂隙含水层水文地质参数反演—以黑龙江七台河市应急水源地为例[J]. 水文地质工程地质,2014,41(5):32 − 37. [CHEN Xiaolian, ZHANG Meiyan, WEN Zhang, et al. Application of numerical simulation to estimate the hydraulic parameters infractured media: A case study in emergency water area of Qitaihe City, Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2014,41(5):32 − 37. (in Chinese with English abstract)
    [10]
    毛喜云, 张强, 于升才, 等. 基于AquiferTest和ModFlow求解哈尔滨河漫滩地区水文地质参数[J]. 天津建设科技,2017,27(6):56 − 59. [MAO Xiyun, ZHANG Qiang, YU Shengcai, et al. Inversion of hydrogeological parameters in Harbin River floodplain based on Aquifer Test and Modflow[J]. Tianjin Construction Science and Technology,2017,27(6):56 − 59. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-3197.2017.06.020
    [11]
    李贵仁. 某铁矿岩溶裂隙含水层水文地质参数反演[J]. 勘察科学技术,2019(1):42 − 46. [LI Guiren. Inversion of hydrogeological parameters of Karst fissure aquifer in an iron mine[J]. Site Investigation Science and Technology,2019(1):42 − 46. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-3946.2019.01.010
    [12]
    SZABÓ N P. A genetic meta-algorithm-assisted inversion approach: hydrogeological study for the determination of volumetric rock properties and matrix and fluid parameters in unsaturated formations[J]. Hydrogeology Journal,2018,26(6):1935 − 1946. DOI: 10.1007/s10040-018-1749-7
    [13]
    MOHARIR K, PANDE C, PATIL S. Inverse modelling of aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software[J]. Geoscience Frontiers,2017,8(6):1385 − 1395. DOI: 10.1016/j.gsf.2016.11.017
    [14]
    李兆峰, 周志芳, 李明远, 等. 弱透水层释水过程中水力参数响应规律[J]. 河海大学学报(自然科学版),2017,45(4):340 − 344. [LI Zhaofeng, ZHOU Zhifang, LI Mingyuan, et al. Variation of hydraulic parameters of aquitard during water release[J]. Journal of Hohai University (Natural Sciences),2017,45(4):340 − 344. (in Chinese with English abstract)
    [15]
    WU Jichun, ZENG Xiankui. Review of the uncertainty analysis of groundwater numerical simulation[J]. Chinese Science Bulletin,2013,58(25):3044 − 3052. DOI: 10.1007/s11434-013-5950-8
    [16]
    张泽鹏, 朱玉晨, 郝奇琛, 等. 呼和浩特盆地地下水流系统变异机制及其资源效应[J]. 水文地质工程地质,2017,44(2):63 − 68. [ZHANG Zepeng, ZHU Yuchen, HAO Qichen, et al. A study on variation mechanism of groundwater flow system in the Hohhot basin and its resources effect analysis[J]. Hydrogeology & Engineering Geology,2017,44(2):63 − 68. (in Chinese with English abstract)
    [17]
    张翼龙. 呼和浩特盆地开采胁迫下的地下水系统响应及适应性对策研究[D]. 北京: 中国地质科学院, 2012.

    ZHANG Yilong. Aquifer system response and its adaptability countermeasures to exploitation in the Hohhot basin[D]. Beijing: Chinese Academy of Geological Sciences, 2012. (in Chinese with English abstract)
    [18]
    赵瑞科, 曹文庚, 杨会峰, 等. 呼和浩特盆地地下水演化特征研究[J]. 人民黄河,2018,40(5):78 − 82. [ZHAO Ruike, CAO Wengeng, YANG Huifeng, et al. Study on evolution characteristics of groundwater in Hohhot Basin[J]. Yellow River,2018,40(5):78 − 82. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2018.05.017
    [19]
    曹文庚, 张翼龙, 李政红, 等. 呼和浩特市大青山山前倾斜平原地质环境问题形成机理研究[J]. 现代地质,2013,27(2):468 − 474. [CAO Wengeng, ZHANG Yilong, LI Zhenghong, et al. Formation mechanism of geological environment issue in piedmont clinoplain of Daqing mountain, Hohhot, Inner Mongolia[J]. Geoscience,2013,27(2):468 − 474. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-8527.2013.02.028
    [20]
    陆丽华, 侯岳岚, 程亚平, 等. 地表水-地下水溶质运移耦合模拟研究: 以某赤泥堆场项目地下水环境影响评价为例[J]. 地下水,2019,41(6):1 − 4. [LU Lihua, HOU Yuelan, CHENG Yaping, et al. Study of solute transport simulation considering the coupling of groundwater and surface water: A case study of an environmental impact assessment of a red mud disposal site on groundwater[J]. Ground Water,2019,41(6):1 − 4. (in Chinese with English abstract)
    [21]
    Panday S, Langevin C D, Niswonger R G, et al. MODFLOW-USG version 1: An unstructured grid version of MODFLOW for simulating groundwater flow and tightly coupled processes using a control volume finite-difference formulation[R]. Washington DC: US Geological Survey, 2013.
    [22]
    周念清, 杨一流, 江思珉. 非结构网格化方法求解地下水流数值模型[J]. 勘察科学技术,2016(1):14 − 17. [ZHOU Nianqing, YANG Yiliu, JIANG Simin. Solving groundwater numerical model with unstructured grid method[J]. Site Investigation Science and Technology,2016(1):14 − 17. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-3946.2016.01.004
    [23]
    杜新强, 常翠, 冶雪艳. 地下水流三维数值模拟中弱透水层初始水位的推求方法分析[J]. 黑龙江水专学报,2008,35(4):94 − 97. [DU Xinqiang, CHANG Cui, YE Xueyan. Analysis on the method to the initial groundwater level of aquitard during three dimensional transient numerical simulation of groundwater flow[J]. Journal of Heilongjiang Hydraulic Engineering,2008,35(4):94 − 97. (in Chinese with English abstract) DOI: 10.3969/j.issn.2095-008X.2008.04.026
    [24]
    王超, 束龙仓, 鲁程鹏. 渗透系数空间变异性对低渗透地层中地下水溶质运移的影响[J]. 河海大学学报(自然科学版),2014,42(2):137 − 142. [WANG Chao, SHU Longcang, LU Chengpeng. Impacts of spatial variability of hydraulic conductivity on solute transport in groundwater of low-permeability stratum[J]. Journal of Hohai University (Natural Sciences),2014,42(2):137 − 142. (in Chinese with English abstract)
    [25]
    王小丹, 凤蔚, 王文科, 等. 基于HYDRUS-1D模型模拟关中盆地氮在包气带中的迁移转化规律[J]. 地质调查与研究,2015,38(4):291 − 298. [WANG Xiaodan, FENG Wei, WANG Wenke, et al. Migrating and transforming rule of nitrogen in unsaturated zone in Guanzhong basin based on HYDRUS-1D model[J]. Geological Survey and Research,2015,38(4):291 − 298. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-4135.2015.04.008
    [26]
    田振东. 基于Visual MODFLOW的卫河河水污染对地下水影响研究[D]. 郑州: 华北水利水电大学, 2016.

    TIAN Zhendong. Based on visual MODFLOW research on between the Wei river water pollution to groundwater[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2016. (in Chinese with English abstract)
  • Cited by

    Periodical cited type(15)

    1. 夏传安,王浩,简文彬. 基于相关性局域化迭代集合平滑反演渗透系数场. 水文地质工程地质. 2024(01): 12-21 . 本站查看
    2. 张杰,黄勇. 长江漫滩区软土渗透系数计算方法对比分析. 中国煤炭地质. 2024(02): 37-42 .
    3. 焦婷婷,邓亚平,钱家忠,骆乾坤. 基于集合平滑数据同化与直接采样法融合水文地球物理数据刻画裂隙网络分布. 水文地质工程地质. 2024(04): 88-100 . 本站查看
    4. 刘文超,张德军,宋丽. 基于渗流―固体相互作用的三维水文地质参数估计研究. 西部资源. 2024(04): 41-45 .
    5. 夏传安,樊秀峰,王浩,简文彬. 耦合变密度地下水流降阶模型与高斯过程的蒙特卡罗模拟. 水文地质工程地质. 2024(05): 1-13 . 本站查看
    6. 尹承深,刘全明,王福强. 基于Sentinel-1A SAR数据的呼和浩特城区地表形变分析. 中国地质灾害与防治学报. 2023(02): 73-81 .
    7. 束龙仓,栾佳文,宫荣,鲁程鹏,丁峰,陶月赞,龚建师. 傍河地下水位监测断面的优化设计. 吉林大学学报(地球科学版). 2023(02): 555-565 .
    8. 李任政. 基坑工程地下水三维渗流与土体沉降数值模拟分析. 绿色科技. 2023(08): 228-232+254 .
    9. 王冬. 弱透水层多类型水文地质参数自动优选方法. 地质灾害与环境保护. 2023(02): 98-103 .
    10. 刘增,范子训,刘晓锋,张琦伟,袁鸿鹄. 北运河河岸潜水含水层水文地质参数分析. 人民黄河. 2023(S2): 40-41+44 .
    11. 孟世豪,崔亚莉,田芳,罗勇,石鸿蕾. 基于MODFLOW-SUB建立变渗透系数的地下水流-地面沉降模型. 吉林大学学报(地球科学版). 2022(02): 550-559 .
    12. 李小兰,曾献奎,王栋,吴吉春. 基于优化-自适应稀疏网格替代模型的地下水模拟参数不确定性分析. 吉林大学学报(地球科学版). 2022(04): 1234-1243 .
    13. 曾一凡,孟世豪,吕扬,武强,华照来,于超,庞凯,程易. 基于矿井安全与生态水资源保护等多目标约束的超前疏放水技术. 煤炭学报. 2022(08): 3091-3100 .
    14. 赵军海. 工程地质勘察中的水文地质危害及对策. 中国新技术新产品. 2021(11): 130-132 .
    15. 孙颖. 改进遗传算法在辽东山区水文地质参数反演中的应用. 水利技术监督. 2021(09): 197-200 .

    Other cited types(4)

Catalog

    Article views (668) PDF downloads (474) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return