ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
HUANG Jinting, LI Zongze, WANG Wenke, SONG Ge, WANG Jiawei. Characteristics of evaporation and its effect factors in the Golmud River catchment[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 31-37. DOI: 10.16030/j.cnki.issn.1000-3665.202012023
Citation: HUANG Jinting, LI Zongze, WANG Wenke, SONG Ge, WANG Jiawei. Characteristics of evaporation and its effect factors in the Golmud River catchment[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 31-37. DOI: 10.16030/j.cnki.issn.1000-3665.202012023

Characteristics of evaporation and its effect factors in the Golmud River catchment

More Information
  • Received Date: December 11, 2020
  • Revised Date: January 12, 2021
  • Available Online: May 12, 2021
  • Published Date: May 12, 2021
  • Evaporation is the key item of water balance calculation. Clarifying its characteristics will be helpful in water resources assessment. The Golmud river catchment is a typical arid inland river catchment in northwest of China, facing the challenges of reasonable groundwater exploitation and retarded groundwater disaster. Previous studies on surface water evaporation in the catchment did not consider the spatial heterogeneity and main control factors, which limits deep understanding of the evaporation process under the background of climate change. In this paper, based on time series, correlation and multiple regression analysis, the variation characteristics and main affecting factors of water evaporation in the upstream, midstream and downstream of the catchment are analyzed. The results show that (1) the water surface evaporation in the basin shows a fluctuating downward trend, but the spatial difference is obvious: 183.2 mm decreased in the upstream mountainous area in recent 60 years, 1135.1 mm decreased in the middle reaches in recent 60 years, and 241.7 mm decreased in the downstream terminal lake in recent 30 years. (2) The main controlling factors of water surface evaporation are different in the catchment: the main controlling factor is temperature in the upstream mountainous area, wind speed in the middle reaches, and water area in the terminal lake. (3) The climate change in the catchment is generally warm and humid, which is consistent with the global climate change. However, water evaporation does not increase with climate change, i.e., showing the “evaporation paradox” phenomena. The results indicate that great attention should be paid to the spatial differences and the main control factors, which have important influence on the evaporation research and water resource evaluation in arid areas.
  • [1]
    LIU X M, LUO Y Z, ZHANG D, et al. Recent changes in pan-evaporation dynamics in China[J]. Geophysical Research Letters,2011,38(13):L13404.
    [2]
    柳春, 王守荣, 梁有叶, 等. 1961—2010年黄河流域蒸发皿蒸发量变化及影响因子分析[J]. 气候变化研究进展,2013,9(5):327 − 334. [LIU Chun, WANG Shourong, LIANG Youye, et al. Analysis of pan evaporation change and the influence factors in the Yellow River Basin in 1961-2010[J]. Progressus Inquisitiones DE Mutatione Climatis,2013,9(5):327 − 334. (in Chinese with English abstract) DOI: 10.3969/j.issn.1673-1719.2013.05.003
    [3]
    王忠富, 杨礼箫, 白晓, 等. “蒸发悖论”在黑河流域的探讨[J]. 冰川冻土,2015,37(5):1323 − 1332. [WANG Zhongfu, YANG Lixiao, BAI Xiao, et al. Evaporation paradox in the Heihe River basin[J]. Journal of Glaciology and Geocryology,2015,37(5):1323 − 1332. (in Chinese with English abstract)
    [4]
    黄金廷, 崔旭东, 王冬, 等. 格尔木河流域地下水生态功能及经济损益阈值解析[J]. 干旱区地理,2019,42(2):263 − 270. [HUANG Jinting, CUI Xudong, WANG Dong, et al. Groundwater ecological function and economic profit and loss threshold in Golmud River Catchment[J]. Arid Land Geography,2019,42(2):263 − 270. (in Chinese with English abstract)
    [5]
    XIAO Y, SHAO J L, FRAPE S K, et al. Groundwater origin, flow regime and geochemical evolution in arid endorheic watersheds: a case study from the Qaidam Basin, northwestern China[J]. Hydrology and Earth System Sciences,2018,22(8):4381 − 4400. DOI: 10.5194/hess-22-4381-2018
    [6]
    马日新, 黄金廷, 田华, 等. 格尔木河流域近60 a降水、蒸发及温度变化特征分析[J]. 干旱区地理,2017,40(5):1005 − 1012. [MA Rixin, HUANG Jinting, TIAN Hua, et al. Characteristics of precipitation, evaporation and temperature at the Golmud River Catchment in recent 60 years[J]. Arid Land Geography,2017,40(5):1005 − 1012. (in Chinese with English abstract)
    [7]
    朱晓倩, 金晓媚, 张绪财, 等. 格尔木河流域山前平原区蒸散量的分布特征[J]. 水文地质工程地质,2019,46(5):55 − 64. [ZHU Xiaoqian, JIN Xiaomei, ZHANG Xucai, et al. Distribution characteristics of evapotranspiration in the valley piedmont plain of the Golmud River Basin[J]. Hydrogeology & Engineering Geology,2019,46(5):55 − 64. (in Chinese with English abstract)
    [8]
    杨笑天. 基于SEBS模型的格尔木河流域地表蒸散量遥感反演及其时空格局分析[D].西安: 长安大学, 2017.

    YANG Xiaotian. Evapotranspiration estimating using remote sensing and spatial-temporal distribution of evapotranspiration in Golmud River basin based on SEBS model[D]. Xi’an: Changan University, 2017. (in Chinese with English abstract)
    [9]
    邓红章. 基于MODIS的格尔木地区蒸散量研究[D]. 西安: 长安大学, 2010.

    DENG Hongzhang. Study on evapotranspiration in Golmud region based on modis[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)
    [10]
    王晓雪. 青海达布逊湖面积变化及湖泊蒸发量的计算[D]. 北京: 中国地质大学(北京), 2019.

    WANG Xiaoxue. Area change and the evaporation estimation of Dabson Lake in Qinghai province[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese with English abstract)
    [11]
    李健, 王辉, 黄勇, 等. 柴达木盆地格尔木河流域生态需水量初步估算探讨[J]. 水文地质工程地质,2008,35(1):71 − 75. [LI Jian, WANG Hui, HUANG Yong, et al. Preliminary estimation on ecological consumption of water of Gelmud River in Chaidamu Basin[J]. Hydrogeology & Engineering Geology,2008,35(1):71 − 75. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2008.01.016
    [12]
    张娟, 宋昌斌, 屈小荣, 等. 察尔汗盐湖矿区气象因素变化规律分析[J]. 化工矿物与加工,2020,49(5):48 − 50. [ZHANG Juan, SONG Changbin, QU Xiaorong, et al. Analysis on change rule of meteorological factors in Qarhan Salt Lake area[J]. Industrial Minerals & Processing,2020,49(5):48 − 50. (in Chinese with English abstract)
    [13]
    中国气象局气候变化中心. 中国气候变化蓝皮书(2020)[M]. 北京: 科学出版社, 2020.

    Climate Change Center of China Meteorological Administration. Blue book on climate change in China (2020)[R]. Beijing: Science Press, 2020. (in Chinese)
    [14]
    BRUTSAERT W, PARLANGE M B. Hydrological cycle explain the evaporation paradox[J]. Nature,1998,396:30 − 31. DOI: 10.1038/23845
    [15]
    RODERICK M L, ROTSTAYN L D, FARQUHAR G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters,2007,34(17):L17403. DOI: 10.1029/2007GL031166
  • Cited by

    Periodical cited type(8)

    1. 王晓东,王宇婷,王双琦,刘晓辉,李晓强. 长白山北坡和西坡林线的气候波动性变化研究. 农业灾害研究. 2024(01): 149-151 .
    2. 程俊晖,苏泉冲,戴长雷,尉意茹,孔达. 水面蒸发影响因素及蒸发悖论研究综述. 甘肃水利水电技术. 2023(02): 1-6+11 .
    3. 王周锋,高一博,王文科,方圆,寇晓梅,高繁. 近水面温湿度变化特征及水面蒸发量计算差异性分析. 地球环境学报. 2023(05): 618-625 .
    4. 王晓燕,尹德超,王雨山,吴斌,安永会,徐蓉桢,王茜,刘蕴. 白洋淀湖泊原位蒸发试验研究. 水文地质工程地质. 2023(06): 204-212 . 本站查看
    5. 汪莹莹. 皖西丘陵地区水面蒸发量变化特征及影响因素分析. 水利技术监督. 2022(05): 135-139 .
    6. 荆思佳,肖薇,王晶苑,郑有飞,王伟,刘强,张圳,胡诚. 1958-2017年太湖蒸发量年际变化趋势及主控因子. 湖泊科学. 2022(05): 1697-1711 .
    7. 苏泉冲,戴长雷,张书鹏,罗丽. 1960-2020年哈尔滨蒸发量的时间变化特征及影响因素分析. 甘肃水利水电技术. 2022(04): 1-5 .
    8. 顾南,张建云,刘翠善,王振龙,王国庆. 地下水埋深对淮北平原冬小麦耗水量影响试验研究. 水文地质工程地质. 2021(04): 15-24 . 本站查看

    Other cited types(1)

Catalog

    Article views (519) PDF downloads (339) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return