ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
QI Lirong, WANG Jiading, ZHANG Dengfei, ZHANG Yongshuang, LI Zhenxiao, SUN Jiaxing, MA Jianfei. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 65-73. DOI: 10.16030/j.cnki.issn.1000-3665.202103073
Citation: QI Lirong, WANG Jiading, ZHANG Dengfei, ZHANG Yongshuang, LI Zhenxiao, SUN Jiaxing, MA Jianfei. A study of granite damage in the macro and microscopic scales under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 65-73. DOI: 10.16030/j.cnki.issn.1000-3665.202103073

A study of granite damage in the macro and microscopic scales under freezing-thawing cycles

More Information
  • Received Date: March 21, 2021
  • Revised Date: June 02, 2021
  • Available Online: August 29, 2021
  • Published Date: September 09, 2021
  • Freezing-thawing damage to rocks is one of the natural disasters that cannot be ignored in engineering construction in plateau regions. Under the action of freezing and thawing, uneven shrinkage of rock minerals and freezing of pore water lead to rock damage caused by pore expansion in rocks, which poses a great threat to engineering stability. In recent years, many researchers have conducted a lot of researches on rock properties under freezing-thawing conditions through theoretical and experimental methods. However, most of the previous studies focused mainly on sedimentary rocks such as sandstones, and very few studies were involved in freezing-thawing of granites in highland alpine regions. In this study, the granite on the landslide area was subjected to uniaxial compression, resistivity and electron microscope scanning (SEM) tests to discuss the damage of granite after multiple freezing-thawing cycles by simulating the cold climate changes on the plateau under freezing-thawing cycles. From the macro and micro multi-scale studies it can be found that: (1) the change of granite quality during freezing-thawing cycles tends to decrease, then increase and finally decrease, which is related to the dual effect of particle drop on the surface of the specimen and the expansion of internal fissures caused by freezing-thawing cycles. (2) As the freezing-thawing cycles increase, the uniaxial compressive strength, elastic modulus and cohesion of granite all show a non-linear decay, while the internal friction angle only fluctuates slightly around the mean value. (3) When the number of freezing-thawing cycles increases, both the freezing-thawing damage factor and the total damage factor under the coupling of freezing-thawing and load increase, which indicates that the number of freezing-thawing cycles has a greater influence on the strength of granite. The results of the study can provide a reference basis for measuring the freezing-thawing strength characteristics of granite in engineering construction in the plateau region.
  • [1]
    彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报,2020,39(12):2377 − 2389. [PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan-Tibet Railway[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2377 − 2389. (in Chinese with English abstract)
    [2]
    程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报,2007,25(1):72 − 84. [CHENG Qiangong, ZHANG Zhuoyuan, HUANG Runqiu. Study on dynamics of rock avalanches: state of the art report[J]. Journal of Mountain Science,2007,25(1):72 − 84. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-2786.2007.01.007
    [3]
    边江豪, 李秀珍, 徐瑞池, 等. 基于贡献率权重模型的川藏铁路沿线大型滑坡危险性区划[J]. 中国地质灾害与防治学报,2021,32(2):84 − 93. [BIAN Jianghao, LI Xiuzhen, XU Ruichi, et al. Hazard zonation of large-scale landslides along Sichuan-Tibet Railway based on contributing weights model[J]. The Chinese Journal of Geological Hazard and Control,2021,32(2):84 − 93. (in Chinese with English abstract)
    [4]
    殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质,2000,27(4):8 − 11. [YIN Yueping. Study on the characteristics and disaster mitigation of the giant landslide at BomiYigong Expressway in Tibet[J]. Hydrogeology & Engineering Geology,2000,27(4):8 − 11. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2000.04.003
    [5]
    殷跃平. 西藏波密易贡高速巨型滑坡概况[J]. 中国地质灾害与防治学报,2000,11(2):103. [YIN Yueping. Overview of the giant landslide of the Yigong Expressway, Bomi, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2000,11(2):103. (in Chinese)
    [6]
    刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报,2002,13(3):9 − 18. [LIU Wei. Study on the characteristic of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet[J]. The Chinese Journal of Geological Hazard and Control,2002,13(3):9 − 18. (in Chinese with English abstract) DOI: 10.3969/j.issn.1003-8035.2002.03.002
    [7]
    GUO C B, ZHANG Y S, DAVID & R, et al. How unusual is the long-runout of the earthquake-triggered giant Luanshibao landslide, Tibetan Plateau, China[J]. Geomorphology,2016,259:145 − 154. DOI: 10.1016/j.geomorph.2016.02.013
    [8]
    刘铮, 李滨, 贺凯, 等. 地震作用下西藏易贡滑坡动力响应特征分析[J]. 地质力学学报,2020,26(4):471 − 480. [LIU Zheng, LI Bin, HE Kai, et al. An analysis of dynamic response characteristics of the Yigong Landslide in Tibet under strong earthquake[J]. Journal of Geomechanics,2020,26(4):471 − 480. (in Chinese with English abstract) DOI: 10.12090/j.issn.1006-6616.2020.26.04.040
    [9]
    杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报,2018,37(3):545 − 563. [YANG Gengshe, SHEN Yanjun, JIA Hailiang, et al. Research progress and tendency in characteristics of multi-scale damage mechanics of rock under freezing-thawing[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(3):545 − 563. (in Chinese with English abstract)
    [10]
    张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报,2013,38(10):1756 − 1762. [ZHANG Huimei, YANG Gengshe. Experimental study of damage deterioration and mechanical properties for freezing-thawing rock[J]. Journal of China Coal Society,2013,38(10):1756 − 1762. (in Chinese with English abstract)
    [11]
    申艳军, 杨更社, 荣腾龙, 等. 岩石冻融循环试验建议性方案探讨[J]. 岩土工程学报,2016,38(10):1775 − 1782. [SHEN Yanjun, YANG Gengshe, RONG Tenglong, et al. Proposed scheme for freeze-thaw cycle tests on rock[J]. Chinese Journal of Geotechnical Engineering,2016,38(10):1775 − 1782. (in Chinese with English abstract) DOI: 10.11779/CJGE201610005
    [12]
    吕文韬, 杨龙, 魏云杰, 等. 新疆塔县地区片麻岩冻融劣化机理与规律试验研究[J]. 水文地质工程地质,2019,46(3):95 − 100. [LYU Wentao, YANG Long, WEI Yunjie, et al. Research on mechanism of freezing-thawing deterioration of gneisses in the Taxian area of Xinjiang[J]. Hydrogeology & Engineering Geology,2019,46(3):95 − 100. (in Chinese with English abstract)
    [13]
    吴刚, 何国梁, 张磊, 等. 大理岩循环冻融试验研究[J]. 岩石力学与工程学报,2006,25(增刊 1):2930 − 2938. [WU Gang, HE Guoliang, ZHANG Lei, et al. Experimental study on cycles of freeze-thaw of marble[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup 1):2930 − 2938. (in Chinese with English abstract)
    [14]
    NICHOLSON D T, NICHOLSON F H. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering[J]. Earth Surface Processes and Landforms,2000,25(12):1295 − 1307. DOI: 10.1002/1096-9837(200011)25:12<1295::AID-ESP138>3.0.CO;2-E
    [15]
    杨更社, 张长庆. 岩体损伤及检测[J]. 西安: 陕西科学技术出版社, 1998.

    YANG Gengshe, ZHANG Changqing. Rock damage and detection [J]. Xi’an: Shaanxi Science and Technology Press, 1998. (in Chinese)
    [16]
    杨更社, 谢定义, 张长庆, 等. 岩石损伤扩展力学特性的CT 分析[J]. 岩石力学与工程学报,1999,18(3):250 − 254. [YANG Gengshe, XIE Dingyi, ZHANG Changqing, et al. CT analysis on mechanic characteristics of damage propagation of rock[J]. Chinese Journal of Rock Mechanics and Engineering,1999,18(3):250 − 254. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.1999.03.002
    [17]
    贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879 − 895. [JIA Hailiang, XIANG Wei, TAN Long, et al. Theoretical analysis and experimental verifications of frost damage mechanism of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):879 − 895. (in Chinese with English abstract)
    [18]
    郭长宝, 杜宇本, 佟元清, 等. 青藏高原东缘理塘乱石包高速远程滑坡发育特征与形成机理[J]. 地质通报,2016,35(8):1332 − 1345. [GUO Changbao, DU Yuben, TONG Yuanqing, et al. Huge long-runout landslide characteristics and formation mechanism: A case study of the Luanshibao landslide, Litang County, Tibetan Plateau[J]. Geological Bulletin of China,2016,35(8):1332 − 1345. (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-2552.2016.08.014
    [19]
    裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学,2017,38(7):1999 − 2006. [PEI Xiangjun, MENG Minghui, YUAN Jinke, et al. Freezing-thawing characteristics of fractured rockmass under dry and saturated conditions[J]. Rock and Soil Mechanics,2017,38(7):1999 − 2006. (in Chinese with English abstract)
    [20]
    田威, 韩女, 张鹏坤. 基于CT 技术的混凝土孔隙结构冻融损伤试验[J]. 中南大学学报(自然科学版),2017,48(11):3069 − 3075. [TIAN Wei,HAN Nü, ZHANG Pengkun. Experiments on the freeze-thaw damage of concrete porous structure based on CT technique[J]. Journal of Central South University(Science and Technology),2017,48(11):3069 − 3075. (in Chinese with English abstract) DOI: 10.11817/j.issn.1672-7207.2017.11.026
  • Related Articles

    [1]HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of the debris flow group in one station of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 137-149. DOI: 10.16030/j.cnki.issn.1000-3665.202103093
    [2]TIE Yongbo, XU Wei, LIANG Jingtao, MENG Minghui, LI Fu, ZHAO Cong. Characteristics of Kazila mountain landslide and its mitigation measures on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 129-136. DOI: 10.16030/j.cnki.issn.1000-3665.202103097
    [3]ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, WANG Baodi, XU Ruge, RAN tao. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202103076
    [4]CHEN Shikuo, LI Hanrui, ZHOU Hang, CHEN Xingqiang, LIU Tong. Route selection of deep-lying and hard rock tunnel in the Sichuan-Tibet Railway based on rock burst risk assessment[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 81-90. DOI: 10.16030/j.cnki.issn.1000-3665.202103099
    [5]GUO Changbao, WANG Lei, LI Renjie, JI Feng, WANG Yang, YAN Xiaohai, LIU Gui. Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Tibet of China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 54-64. DOI: 10.16030/j.cnki.issn.1000-3665.202107012
    [6]LI Xiangquan, MA Jianfei, ZHANG Chunchao, WANG Zhenxing, FU Changchang, BAI Zhanxue. Evolution regularity of the plateau tectonic karst and the relevant karst groundwater circulation mode in Mount Genie and Zaya sections along the Sichuan-Xizang Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 34-45. DOI: 10.16030/j.cnki.issn.1000-3665.202104005
    [7]XU Mo, JIANG Liangwen, LI Xiao, QI Jihong, ZHANG Qiang, LI Xiao. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13-22. DOI: 10.16030/j.cnki.issn.1000-3665.202103101
    [8]ZHANG Yongshuang, GUO Changbao, LI Xiangquan, BI Junbo, MA Jianfei, LIU Feng. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1-12. DOI: 10.16030/j.cnki.issn.1000-3665.202104001
    [9]HUXiasong, . A study of the mechanic strength of vegetation roots for roadbed slope protection in the Tuotuohe river region along the QinghaiTibet railway[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 107-107.
    [10]WANGXiao-jun, . Numerical simulation analyses of artificial upper table and residual thawed layer for embankment of Qinghai-Tibet Railway in the permafrost region[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 50-56.
  • Cited by

    Periodical cited type(16)

    1. 钱玲,吴玉琪,吕功煊,陈港泉. 水盐冻融条件下莫高窟砂砾岩晶相蚀变特征研究. 文物保护与考古科学. 2025(01): 110-121 .
    2. 庄静茹,林威,简文彬,夏昌,黄志辉. 花岗岩残积土的微细观结构研究. 中国地质灾害与防治学报. 2025(02): 136-144 .
    3. 高红梅,徐立,杨帆,李洪伟. 宏细观尺度下冻融红砂岩的损伤特性. 黑龙江科技大学学报. 2025(02): 249-255 .
    4. 王榕臻,邢立亭,邓兴,于苗,袁学圣. 济南泉域岩溶含水介质发育特征研究. 济南大学学报(自然科学版). 2024(03): 280-287 .
    5. 侯圣山,何箫,孟宪森,陈亮,冯振,刘明学,李昂,郭长宝,吉锋. 基于岩石CT扫描的冻融作用对花岗岩细观结构及力学强度影响研究. 地质力学学报. 2024(03): 462-472 .
    6. 郭强,卢汉青,车博文,潘振华. 基于巴西劈裂与扫描电镜的板岩冻融损伤试验研究. 公路. 2024(10): 324-329 .
    7. 张琪,李祥春,LI Biao,聂百胜,张良,刘艺,周昌勇,杨刚. 单轴压缩条件下煤体宏-微观损伤破坏特征研究. 采矿与安全工程学报. 2024(06): 1241-1253 .
    8. 史磊,侯克鹏,孙华芬. 基于SMP准则的冻融受荷岩石损伤软化模型. 科学技术与工程. 2023(04): 1658-1664 .
    9. 张欣欣,范宣梅,王文松,郭劲松,杜三林,于宗洋. 高寒地区楔形体滑坡启动机制离心模型试验研究. 岩石力学与工程学报. 2023(05): 1202-1213 .
    10. 苗浩东,任富强. 冻融循环作用下不同含水率砂岩抗拉特性研究. 工矿自动化. 2023(05): 133-138+152 .
    11. 彭建兵,张永双,黄达,王飞永,王祚鹏. 青藏高原构造变形圈-岩体松动圈-地表冻融圈-工程扰动圈互馈灾害效应. 地球科学. 2023(08): 3099-3114 .
    12. 宋勇军,孟凡栋,毕冉,张琨,张君. 冻融岩石蠕变特性及孔隙结构演化特征研究. 水文地质工程地质. 2023(06): 69-79 . 本站查看
    13. 王前朋,范宣梅,王文松,杜三林,郭劲松,温鑫. 青藏高原片麻岩宏微观冻融损伤特性试验研究. 科学技术与工程. 2023(31): 13515-13524 .
    14. 胡星宇,高乾丰,曾铃,戚双星,邹成. 湿热循环作用下中风化花岗岩强度损伤特性研究. 地下空间与工程学报. 2023(06): 1800-1808 .
    15. 张进元. 冻融作用下公路块石路基损伤特性研究. 青海交通科技. 2023(06): 131-134 .
    16. 张安琪,袁磊,舒中潘,张军,周飞. 不同含水率花岗岩冻融循环作用下的抗压性能及强度损伤特性研究. 资源信息与工程. 2022(05): 64-68 .

    Other cited types(23)

Catalog

    Article views (504) PDF downloads (242) Cited by(39)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return