ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
LI Renjie, HU Fuhang, SHI Yuchuan, et al. A study of deformation process and failure mechanism of hard rock slope based on the bottom friction test[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 145-152. DOI: 10.16030/j.cnki.issn.1000-3665.202105009
Citation: LI Renjie, HU Fuhang, SHI Yuchuan, et al. A study of deformation process and failure mechanism of hard rock slope based on the bottom friction test[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 145-152. DOI: 10.16030/j.cnki.issn.1000-3665.202105009

A study of deformation process and failure mechanism of hard rock slope based on the bottom friction test

More Information
  • Received Date: May 09, 2021
  • Revised Date: September 19, 2021
  • Available Online: April 20, 2022
  • Published Date: May 17, 2022
  • The deformation and failure characteristics of slopes are different under different inclination and dip angles and their comparative analyses and studies are lacking. On the basis of fully considering the deformation and failure characteristics of hard rock slopes, hard rock similar materials are prepared, and the deformation and failure modes of slopes with different inclination and dip angles are analyzed with the bottom friction test method, and are analyzed with the PIVlab technology. The results show that there are obvious differences between the deformation failure mode and the failure range of down-dip and anti-dip slopes. Under the condition of 45° slope, when the dip angle of the down-dip slope changes from 30° to 45°, 60°, and 80°, the deformation and failure mode gradually evolves from slip-tensile to slight slip-bending (or slip-shear), no obvious deformation (overall stability), and to shallow toppling tensile crack. Under the condition of 45° slope and the anti-dip slope, the deformation failure mode gradually evolves from no obvious deformation under the conditions of 30° and 45° rock formation dip angles, and to dumping-cracking under the conditions of 60° and 80°. When the dip angle of the rock formation is steep, the damage range of the anti-dip slope is larger than that of the down-dip slope, and the turning end of the toppling bend is deeper. The results of PIVlab reflect that the speed and displacement vector characteristics of different positions are different under different structural slope conditions, which are consistent with the macroscopic observations, and the deformation zone characteristics are described according to the calculation results. This study can provide some reference for the stability evaluation and treatment design of similar slopes.
  • [1]
    白雪亮, 李红帅, 雷永刚, 等. 马来西亚某水电站倾倒边坡成因机制分析[J]. 矿产与地质,2020,34(4):797 − 803. [BAI Xueliang, LI Hongshuai, LEI Yonggang, et al. Analysis of the formation mechanism of toppling slope in a hydropower station in Malaysia[J]. Mineral Resources and Geology,2020,34(4):797 − 803. (in Chinese with English abstract)
    [2]
    易武, 赵宏渠, 黄海峰, 等. 三峡库区秀龙村反倾岩质边坡变形破坏机理分析[J]. 中国地质灾害与防治学报,2016,27(4):13 − 17. [YI Wu, ZHAO Hongqu, HUANG Haifeng, et al. Failure mechanism of the rock slope at Xiulong, the Three Gorges area[J]. The Chinese Journal of Geological Hazard and Control,2016,27(4):13 − 17. (in Chinese with English abstract)
    [3]
    王章琼, 江志红. 开挖条件下含陡倾结构面顺层岩质边坡破坏模式与稳定性预测[J]. 中国地质灾害与防治学报,2018,29(1):40 − 45. [WANG Zhangqiong, JIANG Zhihong. Failure pattern and stability prediction of bedding rock slope with steep structural plane under excavated condition[J]. The Chinese Journal of Geological Hazard and Control,2018,29(1):40 − 45. (in Chinese with English abstract)
    [4]
    Goodman R E, Bray J W. Toppling of Rock Slope, ASCE. Speciality Conference[J]. Rock Engineering for Foundation & Slopes,1976,2:201 − 234.
    [5]
    张倬元, 王士天, 王兰生, 等. 工程地质分析原理[M]. 4版. 北京: 地质出版社, 2016

    ZHANG Zhuoyuan, WANG Shitian, WANG Lansheng, et al. Principles of engineering geological analysis [M]. 4th ed. Beijing: Geological Publishing House, 2016. (in Chinese)
    [6]
    孙广忠, 张文彬. 一种常见的岩体结构—板裂结构及其力学模型[J]. 地质科学,1985,20(3):275 − 282. [SUN Guangzhong, ZHANG Wenbin. A commonly-siguted rock mass structure—slab-rent structure and its mechanical model[J]. Sciectia Geologica Sinica,1985,20(3):275 − 282. (in Chinese with English abstract)
    [7]
    黄润秋. 岩石高边坡稳定性工程地质分析[M]. 北京: 科学出版社, 2012

    HUANG Runqiu. Engineering geology for high rock slopes[M]. Beijing: Science Press, 2012. (in Chinese)
    [8]
    张恒通, 朱冬春, 王鹏, 等. 顺层岩质边坡变形破坏机理分析[J]. 公路,2021,66(3):67 − 71. [ZHANG Hengtong, ZHU Dongchun, WANG Peng, et al. Analysis of deformation and failure mechanism of bedding rock slope[J]. Highway,2021,66(3):67 − 71. (in Chinese)
    [9]
    邱俊, 任光明, 王云南. 层状反倾-顺倾边坡倾倒变形形成条件及发育规模特征[J]. 岩土力学,2016,37(增刊2):513 − 524. [QIU Jun, REN Guangming, WANG Yunnan. Characteristics of forming conditions and development scale of toppling in anti-dip and dip stratified slopes[J]. Rock and Soil Mechanics,2016,37(Sup2):513 − 524. (in Chinese with English abstract)
    [10]
    尹维林. 西藏扎拉水电站右坝肩反倾板岩边坡变形破坏特征及开挖稳定性研究[D]. 成都: 成都理工大学, 2018

    YIN Weilin. Study on deformation, failure characterristics and excavation stability of right abutment slope of Zala Hydropower Station in Tibet[D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)
    [11]
    王飞, 唐辉明. 雅砻江上游互层斜坡倾倒变形破坏机制与演化[J]. 工程地质学报,2017,25(6):1501 − 1508. [WANG Fei, TANG Huiming. Mechanism and evolotion of toppling in interbedded slopes at upstream of Yalong River[J]. Journal of Engineering Geology,2017,25(6):1501 − 1508. (in Chinese with English abstract)
    [12]
    王飞, 唐辉明, 章广成等. 雅砻江上游深层倾倒体发育特征及形成演化机制[J]. 山地学报,2018,36(3):411 − 421. [WANG Fei, TANG Huiming, ZHANG Guangcheng, et al. Development characteristics and evolution mechanism of the deep-seated toppling in the upstream of the Yalong River, China[J]. Mountain Research,2018,36(3):411 − 421. (in Chinese with English abstract)
    [13]
    李彦奇, 黄达, 孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质,2021,48(4):141 − 150. [LI Yanqi, HUANG Da, MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(4):141 − 150. (in Chinese with English abstract)
    [14]
    刘汉东, 耿正, 王忠福, 等. 强震作用下反倾层状岩质边坡变形及破坏模式研究[J]. 水力发电,2019,45(9):17 − 21. [LIU Handong, GENG Zheng, WANG Zhongfu, et al. Study on the deformation and failure mode of anti-dip layered rock slope under earthquake[J]. Water Power,2019,45(9):17 − 21. (in Chinese with English abstract) DOI: 10.3969/j.issn.0559-9342.2019.09.004
    [15]
    张钧, 梁为邦, 林红, 等. 二元结构库岸边坡失稳机制试验研究[J]. 水文地质工程地质,2020,47(3):156 − 163. [ZHANG Jun, LIANG Weibang, LIN Hong, et al. An experimental study of the bank slope instability mechanism of dual structure reservoir[J]. Hydrogeology & Engineering Geology,2020,47(3):156 − 163. (in Chinese with English abstract)
    [16]
    王军朝, 孙金辉. 川东红层缓倾角岩质崩塌特征与稳定性分析[J]. 地质力学学报,2019,25(6):1091 − 1098. [WANG Junchao, SUN Jinhui. Characteristics and stability analysis of rock collapse of low-angled red-bed slope in east Sichuan[J]. Journal of Geomechanics,2019,25(6):1091 − 1098. (in Chinese with English abstract)
    [17]
    石豫川, 冯文凯, 冯学钢, 等. 国道108线某段缓倾角顺层边坡变形破坏机制物理模拟研究[J]. 成都理工大学学报(自然科学版),2003,30(4):350 − 355. [SHI Yuchuan, FENG Wenkai, FENG Xuegang, et al. Study on mechanism of deformation failure of a low-angle dip bedding slope of national highway No. 108 by physical simulation method[J]. Journal of Chengdu University of Technology (Science& Technology Edition),2003,30(4):350 − 355. (in Chinese with English abstract)
    [18]
    宁奕冰, 唐辉明, 张勃成, 等. 基于正交设计的岩石相似材料配比研究及底摩擦物理模型试验应用[J]. 岩土力学,2020,41(6):2009 − 2020. [NING Yibing, TANG Huiming, ZHANG Bocheng, et al. Investigation of the rock similar material proportion based on orthogonal design and its application in base friction physical model tests[J]. Rock and Soil Mechanics,2020,41(6):2009 − 2020. (in Chinese with English abstract)
    [19]
    姚晔, 章广成, 陈鸿杰, 等. 反倾层状碎裂结构岩质边坡破坏机制研究[J]. 岩石力学与工程学报,2021,40(2):365 − 381. [YAO Ye, ZHANG Guangcheng, CHEN Hongjie, et al. Study on the failure mechanisms counter-tilt rock slopes with layered cataclastic structure[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):365 − 381. (in Chinese with English abstract)
    [20]
    刘榜余, 杨根兰, 覃乙根, 等. 差异风化对红层软硬互层红层边坡变形控制研究[J]. 人民长江,2021,52(8):120 − 126. [LIU Bangyu, YANG Genlan, QIN Yigen, et al. Study on deformation of soft and hard interlayer slope in red bed controlled by differential weathering[J]. Yangtze River,2021,52(8):120 − 126. (in Chinese with English abstract)
    [21]
    陈诗才. 底面摩擦模拟试验的原理与应用[J]. 水文地质工程地质,1988,15(4):38 − 40. [CHEN Shicai. Principle and application of bottom friction simulation test[J]. Hydrogeology & Engineering Geology,1988,15(4):38 − 40. (in Chinese)
    [22]
    LIN Q, CHENG Q, LI K, et al. Contributions of rock mass structure to the emplacement of fragmenting rockfalls and rockslides: Insights from laboratory experiments[J]. Journal of Geophysical Research:Solid Earth,2020,125(4):e2019JB019296.
    [23]
    THIELICKE W, STAMHUIS E J. PIVlab – towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB[J]. Journal of Open Research Software,2014,2:1 − 10. DOI: 10.5334/jors.ai
    [24]
    PATEL A, DHARPURE J K, SNEHMANI, et al. Estimating surface ice velocity on Chhota Shigri glacier from satellite data using Particle Image Velocimetry (PIV) technique[J]. Geocarto international,2019,34(4):335 − 347. DOI: 10.1080/10106049.2017.1404142
    [25]
    庞声宽. 陡倾顺向边坡变形破坏机理及整治措施[J]. 人民珠江,1994,15(2):20 − 24. [PENG Shengkuan. Mechanism of failure by deformation of consequent slope with steep dip angle and its improvement[J]. Pearl River,1994,15(2):20 − 24. (in Chinese with English abstract)
    [26]
    陶志刚, 任树林, 郝宇, 等. 层状反倾边坡破坏机制及NPR锚索控制效果物理模型试验[J]. 岩土力学,2021,42(4):976 − 990. [TAO Zhigang, REN Shulin, HAO Yu, et al. Physical model experiment on failure mechanism and NPR anchor cable control effect of layered counter-tilt slope[J]. Rock and Soil Mechanics,2021,42(4):976 − 990. (in Chinese with English abstract)
    [27]
    吴琴. 岩质边坡崩塌破坏机理及其稳定性分析方法[D]. 重庆: 重庆交通大学, 2010

    WU Qin. Failure mechanism of rock slope collapse and its stability analysis method [D]. Chongqing: Chongqing Jiaotong University, 2010. (in Chinese with English abstract)
  • Related Articles

    [1]LI Yang, ZHAO Hailin, HUANG Bolin, LI Honglin, XU Kaikai. Bank collapse-landslide failure mechanism of typical reverse rock bank slope in Three Gorges Reservoir area[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 167-178. DOI: 10.16030/j.cnki.issn.1000-3665.202308010
    [2]YU Huaichang, ZHANG Jianhao, WANG Zirui, WU Tianlong, WANG Zhuoran. Strength and fracture evolution characteristics of high fill canal levee soil[J]. Hydrogeology & Engineering Geology, 2025, 52(1): 97-103. DOI: 10.16030/j.cnki.issn.1000-3665.202311063
    [3]YU Daijin, HUANG Qiangbing, KANG Xiaosen, CHEN Xing, LIU Yue. A model test study of the interface seepage and failure mechanism of loess-filled slope[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 119-128. DOI: 10.16030/j.cnki.issn.1000-3665.202202019
    [4]CHENG Qiang, GUO Xifeng. Soil structure and in-site shear test of moraine soil near the Xingkang Bridge over the Daduhe River in Luding[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 126-133. DOI: 10.16030/j.cnki.issn.1000-3665.2019.04.17
    [5]HU Weidong, CAO Wengui, ZENG Lyuxian, LIU Xiaohong. Upper bound solution of earth pressure for limited soils adjacent to existing buildings considering friction energy consumption[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 73-79, 85. DOI: 10.16030/j.cnki.issn.1000-3665.2018.05.10
    [6]SHI Linze, YI Lijun, ZHENG Jinhui, QI Changguang. Simulation on open-ended pipe pile installation using transparent soil technology[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 113-120. DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.17
    [7]FU Sihua, LIU Xiaowen, LIU Xingzhi, CHEN Ming, DENG Ziqian. An experimental study of the mechanical properties of tailings filling mold bag[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 83-88, 95. DOI: 10.16030/j.cnki.issn.1000-3665.2018.01.12
    [8]DINGLi-feng, . Lugeon water pressure test and its hydraulic friction in an oil reserve library project[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 35-38.
    [9]HUQi-jun, . Research on evolvement of the progressive slide and failure mechanism of the long bedding slope[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 31-37.
    [10]JIANGHui. An analysis of parameter calculation through pumping tests based on the AquiferTest[J]. Hydrogeology & Engineering Geology, 2011, 38(2): 35-38.
  • Cited by

    Periodical cited type(9)

    1. 文代颖,陈国庆,孙祥,帅文杰,王立娟. 陡倾顺层岩质滑坡时空非均质变形破坏机制研究. 中国安全生产科学技术. 2025(03): 141-147 .
    2. 王林康,郑子涵,章广成,曾鑫,丁柄栋,崩兴涛. 顺层陡倾岩质边坡倾倒模式试验. 地质科技通报. 2025(02): 340-354 .
    3. 穆成林,张御阳,裴向军,马浩,周昕,李林燕. 反倾层状斜坡破裂面演化特征离心机模型试验与数值模拟. 水文地质工程地质. 2024(01): 135-144 . 本站查看
    4. 龚柏城,苑久超,王磊,吉锋. 软硬岩互层反倾高边坡变形破坏过程物理模型试验研究. 地质灾害与环境保护. 2024(01): 87-95 .
    5. 陈斌,李伟,石豫川. 降雨诱发古滑坡多期复活机制物理模拟试验研究. 水道港口. 2024(01): 116-122 .
    6. 黄祥,黄健,贺子城,王豪. 基于图像识别估算碎裂岩崩体积方法研究. 水文地质工程地质. 2024(03): 140-148 . 本站查看
    7. 徐白璐. 包西铁路受损风沙路基防护林带修复设计研究. 运输经理世界. 2024(11): 166-168 .
    8. 赵增辉. 铁路工程路基边坡变形防护施工研究. 工程建设与设计. 2023(08): 28-30 .
    9. 伍小刚,周世文,朱锐杰,李彦彬,朱登科. 泸州市栖云路缓倾岩质边坡变形成因分析及勘察方法改进建议. 四川地质学报. 2023(S1): 40-46 .

    Other cited types(7)

Catalog

    Article views (391) PDF downloads (230) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return