ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
WANG Junzhi, LI Qingbo, WANG Guijun, et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 12-19. DOI: 10.16030/j.cnki.issn.1000-3665.202105024
Citation: WANG Junzhi, LI Qingbo, WANG Guijun, et al. Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 12-19. DOI: 10.16030/j.cnki.issn.1000-3665.202105024

Permeability structure of the horizontally-stratified dam foundation rock mass and its engineering significance

More Information
  • Received Date: May 05, 2021
  • Revised Date: July 09, 2021
  • Available Online: November 07, 2021
  • Published Date: January 14, 2022
  • Identifying the permeability structure of the dam foundation rock mass is important for the formulation of seepage control schemes. For the horizontally-stratified red-bed rock mass of the Yellow River Guxian Dam foundation, this paper adopted a "continuous, high-resolution" water pressure test data processing method to analyze the relationships between rock mass permeability and elevation, lithology and shear zones, clarifiy the permeability structure of the dam foundation rock mass, and propose seepage control advice. The results indicate that the Guxian Dam foundation rock mass is characterized by a structural and random permeability behavior. The structure shows that the permeability decreases with elevation. The randomness shows that the permeability randomly fluctuates due to lithology and shear zones. For the river-bed dam foundation rock mass, the bottom elevation of the weathering and unloading zone is 450 m or so, and the 1Lu bottom boundary is at the elevation of approximately 340 m. For the rock mass of the dam abutment, the 3Lu bottom boundary is located at the elevation of 560~580 m. The section of 350~360 m elevation has a certain thickness of soft rock, a poor development of shear structure, and a low permeability. It can be regarded as a confining layer and a potential target for the optimization of seepage control schemes. In view of the universal applicability, the method proposed in this paper can be used for reference in similar projects.
  • [1]
    李清波, 闫长斌. 岩体渗透结构类型的划分及其渗透特性研究[J]. 工程地质学报,2009,17(4):503 − 507. [LI Qingbo, YAN Changbin. Classification of permiability structure types of rock mass and its permiability characteristics[J]. Journal of Engineering Geology,2009,17(4):503 − 507. (in Chinese with English abstract) DOI: 10.3969/j.issn.1004-9665.2009.04.011
    [2]
    万力, 李清波, 王文贵. 砂泥岩互层裂隙地层的渗透性特征[J]. 水利学报,1993,24(9):82 − 88. [WAN Li, LI Qingbo, WANG Wengui. Permeability characteristics of interbedded fractured strata of sand and mudstone[J]. Journal of Hydraulic Engineering,1993,24(9):82 − 88. (in Chinese) DOI: 10.3321/j.issn:0559-9350.1993.09.013
    [3]
    张有天. 岩石水力学与工程[M]. 北京: 中国水利水电出版社, 2005.

    ZHANG Youtian. Rock hydraulics and engineering[M]. Beijing: China Water Power Press, 2005. (in Chinese)
    [4]
    周志芳, 王锦国. 裂隙介质水动力学原理[M]. 北京: 中国水利水电出版社, 2004.

    ZHOU Zhifang, WANG Jinguo. Fracture medium hydrodynamics [M]. Beijing: China Water and Power Press, 2004. (in Chinese)
    [5]
    BEAR J, DE MARSILY G, TSANG C F. Preface[C]//Flow and Contaminant Transport in Fractured Rock. Amsterdam: Elsevier, 1993.
    [6]
    田开铭, 万力. 各向异性裂隙介质渗透性的研究与评价[M]. 北京: 学苑出版社, 1989.

    TIAN Kaiming, WAN Li. Research and evaluation of permeability in anisotropic fractured media [M]. Beijing: Xueyuan Press, 1989. (in Chinese)
    [7]
    刘瑞新, 曹丁涛, 胡东祥. 基于原位实测的下组煤底板岩层阻渗性研究[J]. 水文地质工程地质,2016,43(1):105 − 110. [LIU Ruixin, CAO Dingtao, HU Dongxiang. A study of the impermeability of the lower coal seam floor rocks at the Yanzhou coalfield based on in situ test[J]. Hydrogeology & Engineering Geology,2016,43(1):105 − 110. (in Chinese with English abstract)
    [8]
    水利电力部水利水电规划设计院. 水利水电工程地质手册[M]. 北京: 水利电力出版社, 1985.

    Water Resources and Hydropower Planning and Design Institute. Geological manual of water conservancy and hydropower engineering [M]. Beijing: Hydraulic and Electric Power Press, 1985. (in Chinese)
    [9]
    王新峰, 梁杏, 孙蓉琳, 等. 一种层状岩体压水试验成果计算分析渗透性的新方法[J]. 水文地质工程地质,2011,38(1):46 − 52. [WANG Xinfeng, LIANG Xing, SUN Ronglin, et al. A new method of hydraulic conductivity calculating and analysis by water pressure test in layered rock[J]. Hydrogeology & Engineering Geology,2011,38(1):46 − 52. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2011.01.009
    [10]
    张必昌, 胡成, 陈刚, 等. 利用电导率测井与压水试验联合评价岩体渗透性的方法[J]. 水文地质工程地质,2019,46(3):62 − 69. [ZHANG Bichang, HU Cheng, CHEN Gang, et al. Method of evaluating the permeability of rock mass by the combination of packer test and flowing fluid electrical conductivity log[J]. Hydrogeology & Engineering Geology,2019,46(3):62 − 69. (in Chinese with English abstract)
    [11]
    蒋小伟, 万力, 胡晓农. 砂泥岩裂隙岩体埋深和岩性对渗透性影响分析[J]. 水科学进展,2008,19(4):574 − 580. [JIANG Xiaowei, WAN LI, HU Xiaonong. Variation of permeability with depth and lithology in a formation of fractured sandstone-mudstone media[J]. Advances in Water Science,2008,19(4):574 − 580. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-6791.2008.04.019
    [12]
    中华人民共和国水利部. 水利水电工程钻孔压水试验规程: SL 31—2003[S]. 北京: 中国水利水电出版社, 2003.

    Ministry of Water Resources of the People's Republic of China. Code of water pressure test in borehole for water resources and hydropower engineering: SL 31—2003[S]. Beijing: China Water Power Press, 2003. (in Chinese)
    [13]
    陈小江. 全面实施黄河流域综合规划谋求黄河长治久安和流域可持续发展[J]. 人民黄河,2013,35(10):1 − 4. [CHEN Xiaojiang. Full scale implement of master planning of Yellow River Basin promoting long-term stability and sustainable development of Yellow River[J]. Yellow River,2013,35(10):1 − 4. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1379.2013.10.001
    [14]
    胡春宏, 陈建国, 陈绪坚. 论古贤水库在黄河治理中的作用[J]. 中国水利,2010(18):1 − 5. [HU Chunhong, CHEN Jianguo, CHEN Xujian. Discussion on the role of Guxian reservoir in the improvement of Yellow River[J]. China Water Resources,2010(18):1 − 5. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-1123.2010.18.002
    [15]
    黄河勘测规划设计研究院有限公司. 黄河古贤水利枢纽工程可行性研究报告[R]. 郑州: 黄河勘测规划设计研究院有限公司, 2018.

    Yellow River Engineering Consulting Co Ltd. Feasibility study report of Yellow River Guxian Water Conservancy Project [R]. Zhengzhou: Yellow River Engineering Consulting Co Ltd, 2018. (in Chinese)
    [16]
    闫长斌, 吴伟功, 王贵军. 含层间剪切带的层状复合岩体质量分级[J]. 岩石力学与工程学报,2018,37(增刊1):3449 − 3457. [YAN Changbin, WU Weigong, WANG Guijun. Quality classification of stratified composite rock mass with interlayer shear zones[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(Sup1):3449 − 3457. (in Chinese with English abstract)
    [17]
    陈艳国, 李斌, 吴伟功. 基于CATIA的古贤水利枢纽三维地质建模[J]. 人民黄河,2011,33(5):138 − 139. [CHEN Yanguo, LI Bin, WU Weigong. Three-dimensional geological modeling of Guxian Water Conservancy Project based on CATIA[J]. Yellow River,2011,33(5):138 − 139. (in Chinese) DOI: 10.3969/j.issn.1000-1379.2011.05.059
    [18]
    白正雄, 李斌, 宋志宇. 古贤水利枢纽工程重力坝典型坝段地基渗流分析[J]. 水电能源科学,2019,37(1):85 − 87. [BAI Zhengxiong, LI Bin, SONG Zhiyu. Seepage analysis of base in typical gravity dam of Guxian water conservancy project[J]. Water Resources and Power,2019,37(1):85 − 87. (in Chinese with English abstract)
    [19]
    张成志, 尹丹, 郭明. 钻孔压水试验测试仪及其在古贤水利枢纽工程中的试验应用[J]. 探矿工程(岩土钻掘工程),2010,37(12):32 − 35. [ZHANG Chengzhi, YIN Dan, GUO Ming. Experimental application of borehole water pressure test instrument in Guxian hydro-junction project[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2010,37(12):32 − 35. (in Chinese with English abstract)
    [20]
    FETTER C W. Applied hydrogeology[M]. New Jersey: Prentice Hall New Jersey, 2001.
    [21]
    杨金忠, 蔡树英, 黄冠华, 等. 多孔介质中水分及溶质运移的随机理论[M]. 北京: 科学出版社, 2000.

    YANG Jinzhong, CAI Shuying, HUANG Guanhua, et al. Stochastic theory of water and solute transport in porous media [M]. Beijing: Science Press, 2000. (in Chinese)
    [22]
    DEUTSCH C V. Geostatistical reservoir modeling [M]. New York: Oxford University Press, 2002.
    [23]
    蒋小伟, 万力, 梁四海, 等. 基于去丛聚效应的裂隙岩体渗透性分析[J]. 工程勘察,2007,35(3):21 − 26. [JIANG Xiaowei, WAN Li, LIANG Sihai, et al. Analysis on spatial structure of permeability in fractured media based on declustering[J]. Geotechnical Investigation & Surveying,2007,35(3):21 − 26. (in Chinese with English abstract)
    [24]
    蒋小伟, 万力, 胡晓农. 基于压水试验数据的砂泥岩裂隙岩体渗透结构分析[J]. 自然科学进展,2008,18(3):355 − 369. [JIANG Xiaowei, WAN Li, HU Xiaonong. Analysis the permeability structure based on the sandstone and mudstone fractured rock of the water pressure test[J]. Progress in Natural Science,2008,18(3):355 − 369. (in Chinese with English abstract) DOI: 10.3321/j.issn:1002-008X.2008.03.016
    [25]
    万力, 蒋小伟, 王旭升. 含水层的一种普遍规律: 渗透系数随深度衰减[J]. 高校地质学报,2010,16(1):7 − 12. [WAN Li, JIANG Xiaowei, WANG Xusheng. A common regularity of aquifers: the decay in hydraulic conductivity with depth[J]. Geological Journal of China Universities,2010,16(1):7 − 12. (in Chinese with English abstract) DOI: 10.3969/j.issn.1006-7493.2010.01.002
    [26]
    LI Q B, WANG J Z, WANG G J, et al. Evaluation of lithology variations in layered red beds with depth: an example of the Yellow River Guxian Dam, NW China[J]. Lithosphere, 2021,DOI: 10.2113/2021/7866225.
  • Related Articles

    [1]LIU Yi, SHI Peidong, LIU Miao, XU Kairan, ZHANG Ning, JIANG Peng. Analysis of water balance in the middle reaches of the Yellow River based on ecological water demand: A case study on Qinhe River Basin[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 30-40. DOI: 10.16030/j.cnki.issn.1000-3665.202304043
    [2]GAO Mengmeng, LI Xiaolei, YANG Nan, WANG Yi, LIU Qiong, ZHAO Zixin. Spatio-temporal variation of vegetation and its correlation with soil moisture in the Yellow River Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 172-181. DOI: 10.16030/j.cnki.issn.1000-3665.202108051
    [3]WANG Yaqin, YANG Wei, XING Bo, LUO Yi. A study of influencing factors of spatio-temporal evapotranspiration variation across the Yellow River Basin under the Budyko framework[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 23-33. DOI: 10.16030/j.cnki.issn.1000-3665.202205066
    [4]CHEN Shuxian, SHANG Ruihua, FENG Yucheng, WANG Zhiqiang, MA Teng. Effects of Xinglong Hydro-Junction on nitrogen distribution in the Hanjiang River riparian zone[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 182-190. DOI: 10.16030/j.cnki.issn.1000-3665.202006056
    [5]LI Yunfeng, WANG Wenke, WANG Guoqing, LIU Cuishan, ZHENG Haochang, MA Zhitong. The applicability of various potential evapotranspiration estimation methods in the headwater area of the Yellow River[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 10-19. DOI: 10.16030/j.cnki.issn.1000-3665.202011044
    [6]ZHANG Chenchen, HUANG Chong, HE Yun, LIU Qingsheng, LI He, WU Chunsheng, LIU Gaohuan. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 21-30. DOI: 10.16030/j.cnki.issn.1000-3665.202002033
    [7]XUEYang, . Variation of evapotranspiration of Ningxia Yellow River economic zone and the validation using water budget method[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 27-32.
    [8]ZHANGSen-qi~, . Decline in regional groundwater level and related environment problems in the head water area of the Yellow River[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 109-113.
    [9]HUJun-feng, . Experiment of permeability of riverbed sediment in the Yellow River[J]. Hydrogeology & Engineering Geology, 2009, 36(3): 25-28.
    [10]GUOJiao, . Remote sensing modelling of groundwater level distribution in the Yellow River Delta[J]. Hydrogeology & Engineering Geology, 2009, 36(2): 19-24.
  • Cited by

    Periodical cited type(7)

    1. 李睿,周洪福,李树武,巨广宏,刘万林,唐文清. 大跨度高埋深地下洞室群开挖后涌水量预测. 水文地质工程地质. 2025(01): 179-189 . 本站查看
    2. 李文雅,谢承平,高平. 地质BIM在古贤水利枢纽中的设计与应用. 中国水能及电气化. 2025(01): 64-70 .
    3. 王俊智,陈艳国,张海丰,万伟锋. 基于渗流-应力耦合的近水平层状裂隙岩体渗透张量估算. 长江科学院院报. 2025(02): 115-121 .
    4. 温立峰,王民侠,张晨. 砂泥岩互层坝基渗漏问题及处理措施研究. 西北水电. 2025(01): 78-86 .
    5. 温立峰,孙少博,李炎隆,王民侠,张晨,田欣. 砂泥岩互层地基防渗措施渗控效果及敏感性分析. 水文地质工程地质. 2025(03): 163-173 . 本站查看
    6. 邓祺文,陈刚,郑可,施雯,胡成. 基于广义径向流模型的非均质孔隙含水层井流试验分析. 水文地质工程地质. 2022(02): 17-23 . 本站查看
    7. 张亚. 布仑口-公格尔水电站工程压水试验成果研究. 黑龙江水利科技. 2022(03): 140-142 .

    Other cited types(0)

Catalog

    Article views (599) PDF downloads (384) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return