ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87-93. DOI: 10.16030/j.cnki.issn.1000-3665.202108009
Citation: GUO Yongchun, ZHAO Fengxian, YAN Shenglong, et al. An experimental study of the triaxial expansion force of red-bed mudstone[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 87-93. DOI: 10.16030/j.cnki.issn.1000-3665.202108009

An experimental study of the triaxial expansion force of red-bed mudstone

More Information
  • Received Date: August 03, 2021
  • Revised Date: October 27, 2021
  • Available Online: April 10, 2022
  • Published Date: May 17, 2022
  • Aiming at the problem that the swelling force of the red-bed mudstone is smaller than the theoretical value according to the code, this paper develops a triaxial swelling force device for the swelling rock. By placing the sample first and then restraining it, the deformation gap between the rock and the container’s wall is overcome. Through the experimental research of the triaxial expansion force of expansive soil and red-bed mudstone, the rationality and effectiveness of the triaxial expansion force device are verified. According to the experimental test results of the typical red-bed mudstone samples in Sichuan, the changes of the swelling force of the muddy swelling rock is preliminarily summarized. The research results show that the triaxial expansion force device and its test method can overcome the limitations of the existing method of consolidation instrument test. It is simple to operate, is of good practicability, and can be applied to the triaxial expansion force test of expansive soil and expansive rock. The experimental results of comparison of triaxial expansion force and uniaxial expansion force show that the triaxial expansion force of the red-bed mudstone is mostly in the magnitude of MPa, and the expansion force tested by the consolidation instrument is mostly in the magnitude of kPa. Through the analysis of the test results and the observation of the sample after expansion, it is found that the expansion mechanism of the red-bed mudstone is different from that of the expansive soil. The red-bed mudstone is mainly the surface layer of fresh rock that absorbs water and swells and disintegrates. After the surface layer is denuded, the fresh surface absorbs water again to swell and disintegrate. This is a cyclic expansion process layer by layer.
  • [1]
    郭永春, 谢强, 文江泉. 我国红层分布特征及主要工程地质问题[J]. 水文地质工程地质,2007,34(6):67 − 71. [GUO Yongchun, XIE Qiang, WEN Jiangquan. Red beds distribution and engineering geological problem in China[J]. Hydrogeology & Engineering Geology,2007,34(6):67 − 71. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2007.06.016
    [2]
    张化川. 膨胀性围岩隧道底部隆起力学机理与处治技术研究[D]. 西安: 长安大学, 2018

    ZHANG Huachuan. Research on mechanical mechanism and treatment technology of tunnel floor heave in swelling rock[D]. Xi’an: Chang’an University, 2018. (in Chinese with English abstract)
    [3]
    中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004

    Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
    [4]
    中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
    [5]
    中华人民共和国铁道部. 铁路工程特殊岩土勘察规程: TB 10038—2012[S]. 北京: 中国铁道出版社, 2015

    Ministry of Railways of the People’s Republic of China. Code for special soil and rock investigation of railway engineering: TB 10038—2012[S]. Beijing: China Railway Publishing House, 2015. (in Chinese)
    [6]
    中华人民共和国交通运输部. 公路工程地质勘察规范: JTG C20—2011[S]. 北京: 人民交通出版社, 2011

    Ministry of Transport of the People’s Republic of China. Code for highway engineering geological investigation: TG C20—2011[S]. Beijing: China Communications Press, 2011. (in Chinese)
    [7]
    中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 水利水电工程地质勘察规范: GB 50487—2008[S]. 北京: 中国计划出版社, 2009

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Code for engineering geological investigation of water resources and hydropower: GB 50487—2008[S]. Beijing: China Planning Press, 2009. (in Chinese)
    [8]
    佘诗刚, 译. 国际岩石力学学会膨胀岩委员会和试验方法委员会膨胀岩工作小组关于泥质膨胀岩室内试验的建议方法[J]. 岩土力学,1994,15(3):81 − 93. [SHE Shigang, trans. One-dimensional time dependent stress-strain behaviour of soils, elastic visco-plastic modelling, and consolidation analysis[J]. Rock and Soil Mechanics,1994,15(3):81 − 93. (in Chinese)
    [9]
    张颖钧. 裂土三向胀缩性的室内研究[J]. 大坝观测与土工测试,1990(1):13 − 22. [ZHANG Yingjun. Laboratory investigations of three-dimensional swell-shrinking characteristics of expansive soils[J]. Dam Observation and Geotechnical Testing,1990(1):13 − 22. (in Chinese with English abstract)
    [10]
    谢云, 陈正汉, 李刚, 等. 南阳膨胀土三向膨胀力规律研究[J]. 后勤工程学院学报,2006,22(1):11 − 14. [XIE Yun, CHEN Zhenghan, LI Gang, et al. Test research on three-dimensional swelling pressure of Nanyang expansive soil[J]. Journal of Logistical Engineering University,2006,22(1):11 − 14. (in Chinese with English abstract) DOI: 10.3969/j.issn.1672-7843.2006.01.003
    [11]
    秦冰, 陈正汉, 刘月妙, 等. 高庙子膨润土GMZ001三向膨胀力特性研究[J]. 岩土工程学报,2009,31(5):756 − 763. [QIN Bing, CHEN Zhenghan, LIU Yuemiao, et al. Characteristics of 3D swelling pressure of GMZ001 bentonite[J]. Chinese Journal of Geotechnical Engineering,2009,31(5):756 − 763. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-4548.2009.05.019
    [12]
    池泽成, 陈善雄, 周哲, 等. 合肥重塑膨胀土三向膨胀力试验研究[J]. 岩土力学, 2017, 38(增刊1): 381 − 386

    CHI Zecheng, CHEN Shanxiong, ZHOU Zhe, et al. An experimental study of three-dimensional swelling pressure of Hefei remolded expansive clay[J]. Rock and Soil Mechanics, 2017, 38(Sup 1): 381 − 386. (in Chinese with English abstract)
    [13]
    王雄, 朱宝龙, 汪锴, 等. 重塑膨胀性泥页岩三向膨胀力特性研究[J]. 工业建筑,2018,48(10):131 − 136. [WANG Xiong, ZHU Baolong, WANG Kai, et al. Study of three-dimensional expansion force characteristics of remolded swelling mud shale[J]. Industrial Construction,2018,48(10):131 − 136. (in Chinese with English abstract)
  • Cited by

    Periodical cited type(15)

    1. 邓威,肖世国. 含裂隙近水平红层软岩边坡渗透稳定性模型试验. 水文地质工程地质. 2024(01): 57-68 . 本站查看
    2. 朱宝龙,任龙. 考虑温度影响的岩石三向膨胀力测量仪及其实验设计. 实验科学与技术. 2024(01): 9-15 .
    3. 张敏,孙旭曙,赵二平,冯兴礼,詹润禾. 基于PFC~(3D)的膨胀岩湿胀变形研究. 三峡大学学报(自然科学版). 2024(03): 43-49 .
    4. 余云燕,杜乾中,罗崇亮,丁小刚,李永鹏. 红层泥岩填料蠕变特性及分数阶五元件非线性蠕变模型研究. 中南大学学报(自然科学版). 2024(04): 1654-1664 .
    5. 邓兆宁,常洲,鲁志方,晏长根. 穿越富水断层时红层泥岩隧道的受力响应. 地球科学与环境学报. 2024(03): 414-426 .
    6. 蒙晓新,张凯. 膨胀岩地区隧道围岩力学性能及变形规律研究. 西部交通科技. 2024(03): 134-137 .
    7. 郭华,罗轶,唐晓玲,严越,周飞,黎佳,李畅. 红层地区挖填场地地下水影响评价及分类体系的建立. 四川地质学报. 2024(03): 478-483 .
    8. 曾章波,黄华,梅龙喜,裴志勇,方火浪. 饱和砾性土不排水动力强度及变形特性试验. 吉林大学学报(地球科学版). 2023(01): 207-217 .
    9. 陈继彬,李雪梅,罗益斌,冯世清,王媛媛. 侏罗系中等风化泥岩地基承载力试验研究. 水文地质工程地质. 2023(02): 103-111 . 本站查看
    10. 袁肇彦. 基于管桩改良下水工地基软土力学试验研究. 海河水利. 2023(03): 74-79 .
    11. 周飞,罗轶,严越,黎佳,王双峰,谭俊平,亓星. 自动化监测系统在红层丘陵非(半)固结土场地应用. 甘肃水利水电技术. 2023(07): 35-39 .
    12. 刘文,余天彬,王猛,宋班,黄细超,董继红,江煜,孙渝江. 缓倾红层地区岩质崩塌基本特征及成因机理初步分析——以四川洪雅铁匠湾崩塌为例. 中国地质灾害与防治学报. 2023(05): 54-63 .
    13. 杜以龙,李庆林,仲光军,郇荣建,陈雯雯. 泥岩填料路基边坡稳定性的影响因素. 山东交通学院学报. 2023(04): 109-115 .
    14. 杨君磊,王淼,韩佰恩,吕国伟,陈雯雯. 泥岩路基填料抗剪性能实验研究. 山西建筑. 2022(23): 76-79 .
    15. 党杰,范宣梅,田维勇. 贵州黔西市仓堡田滑坡变形特征及成因分析. 科学技术与工程. 2022(33): 14617-14625 .

    Other cited types(3)

Catalog

    Article views (355) PDF downloads (551) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return