ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
YANG Weibo, ZHANG Laijun, WANG Feng. Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 176-185. DOI: 10.16030/j.cnki.issn.1000-3665.202108036
Citation: YANG Weibo, ZHANG Laijun, WANG Feng. Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 176-185. DOI: 10.16030/j.cnki.issn.1000-3665.202108036

Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage

More Information
  • Received Date: August 17, 2021
  • Revised Date: December 11, 2021
  • Available Online: August 03, 2022
  • Published Date: September 18, 2022
  • In order to examine the influences of buried pipe parameters on the thermal-mechanical coupling characteristics of energy piles under the groundwater seepage, the numerical models of energy piles with different buried pipe parameters are established. The influences of the buried pipe number, layout of buried pipe, and diameter of buried pipe on the heat exchange rate per pile depth, daily heat exchange amount, pile body average temperature rises, displacement increment, and additional temperature load are investigated. The results show that the increasing number of buried pipes can improve the heat transfer of energy pile, but also increase the thermal interference between different buried pipes in the pile, resulting in the decrease of heat transfer performance and the increase of pile displacement and additional temperature load. Under the groundwater seepage, the layout of buried pipes has a significant effect on the heat transfer performance, but has little effect on the mechanical properties of the pile. Moreover, with the increasing seepage velocity, the difference of heat transfer rates of the energy piles corresponding to two layouts increases gradually, and the pile top displacement increment and the pile additional temperature load decrease gradually. The increasing diameter of buried pipe can improve the heat transfer of energy pile, but it will also increase the temperature rise of the pile and the soil around the pile, leading to the increase of pile displacement and additional temperature load. The research results can provide guidance for the optimal design and efficient operation of energy pile under seepage action.
  • [1]
    金光, 张之强, 吴暄, 等. 严寒地区地源热泵地埋管周围土壤冻结影响因素的实验研究[J]. 水文地质工程地质,2017,44(6):164 − 168. [JIN Guang, ZHANG Zhiqiang, WU Xuan, et al. Experimental study on influencing factors of soil freezing around ground source heat pump buried pipe in cold region[J]. Hydrogeology & Engineering Geology,2017,44(6):164 − 168. (in Chinese with English abstract)

    JIN Guang, ZHANG Zhiqiang, WU Xuan. Experimental study on influencing factors of soil freezing around ground source heat pump buried pipe in cold region[J]. Journal of Hydrogeology Engineering Geology, 2017, 44(6): 164-168. (in Chinese with English abstract)
    [2]
    WANG Z J, ZHANG R H, FANG P F, et al. Analysis of an energy pile enduring cyclic temperature loads[J]. Geotechnical Research,2019,6(3):227 − 233. DOI: 10.1680/jgere.18.00043
    [3]
    杨涛, 刘律智, 花永盛. 冷-热循环下能量桩热-力学特性的数值模拟[J]. 防灾减灾工程学报,2019,39(4):585 − 591. [YANG Tao, LIU Lvzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behaviour of energy pile subjected to cooling-heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):585 − 591. (in Chinese with English abstract)

    YANG Tao, LIU Lvzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behaviour of energy pile subjected to cooling-heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 585-591. (in Chinese with English abstract)
    [4]
    吴冠中, 张丹, 程健, 等. 不同埋管形式的预制能量管桩热响应试验研究[J]. 防灾减灾工程学报,2019,39(4):615 − 621. [WU Guanzhong, ZHANG Dan, CHENG Jian, et al. Thermal response tests on PHC energy piles with different configuration of heat exchange loop[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):615 − 621. (in Chinese with English abstract)

    WU Guanzhong, ZHANG Dan, CHENG Jian, et al. Thermal response tests on PHC energy piles with different configuration of heat exchange loop[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 615-621. (in Chinese with English abstract)
    [5]
    常虹, 李洋, 李宗效. 不同埋管形式对混凝土能量桩受力特性的数值模拟研究[J]. 吉林建筑大学学报,2021,38(1):27 − 33. [CHANG Hong, LI Yang, LI Zongxiao. Numerical simulation study on mechanical characteristics of concrete energy pile under different buried pipe forms[J]. Journal of Jilin Jianzhu University,2021,38(1):27 − 33. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0185.2021.01.005

    CHANG Hong, LI Yang, LI Zongxiao. Numerical simulation study on mechanical characteristics of concrete energy pile under different buried pipe forms[J]. Journal of Ji lin Jian zhu University, 2021, 38(1): 27-33. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0185.2021.01.005
    [6]
    赵蕾, 高林, 张爽, 等. 不同埋管形式能量桩换热性能与承载性能的对比研究[J]. 安全与环境学报,2020,20(1):81 − 90. [ZHAO Lei, GAO Lin, ZHANG Shuang, et al. Exploration of the thermo-mechanical features of energy piles in regard to the different types of buried pipes[J]. Journal of Safety and Environment,2020,20(1):81 − 90. (in Chinese with English abstract)

    ZHAO Lei, GAO Lin, ANG Shuang, et al. Exploration of the thermo-mechanical features of energy piles in regard to the different types of buried pipes[J]. Journal of Safety and Environment, 2020, 20(1): 81-90. (in Chinese with English abstract)
    [7]
    王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学,2017,34(1):85 − 91. [WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Model tests on thermal mechanical behaviour of energy piles influenced with heat exchangers types[J]. Engineering Mechanics,2017,34(1):85 − 91. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2015.05.0455

    WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Model tests on thermal mechanical behaviour of energy piles influenced with heat exchangers types[J]. Engineering Mechanics, 2017, 34(1): 85-91. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2015.05.0455
    [8]
    PARK S, LEE S, LEE D, et al. Effect of thermal interference on energy piles considering various configurations of heat exchangers[J]. Energy and Buildings,2019,199:381 − 401. DOI: 10.1016/j.enbuild.2019.07.008
    [9]
    PARK S, LEE S, OH K, et al. Engineering chart for thermal performance of cast-in-place energy pile considering thermal resistance[J]. Applied Thermal Engineering,2018,130:899 − 921. DOI: 10.1016/j.applthermaleng.2017.11.065
    [10]
    GO G H, LEE S R, YOON S, KANG H. Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects[J]. Applied Energy,2014,125:165 − 178. DOI: 10.1016/j.apenergy.2014.03.059
    [11]
    YOU S, CHENG X H, YU C L, et al. Effects of groundwater flow on the heat transfer performance of energy piles:Experimental and numerical analysis[J]. Energy and Buildings,2017,155:249 − 259. DOI: 10.1016/j.enbuild.2017.09.023
    [12]
    WANG D Q, LU L, ZHANG W K, et al. Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils[J]. Applied Energy,2015,160:705 − 714. DOI: 10.1016/j.apenergy.2015.04.037
    [13]
    ZHANG W K, YANG H X, FANG L, et al. Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage[J]. International Journal of Heat and Mass Transfer,2017,105:58 − 66. DOI: 10.1016/j.ijheatmasstransfer.2016.09.066
    [14]
    GO G H, LEE S R, KANG H B, et al. A novel hybrid design algorithm for spiral coil energy piles that considers groundwater advection[J]. Applied Thermal Engineering,2015,78:196 − 208. DOI: 10.1016/j.applthermaleng.2014.12.060
    [15]
    YOU T, YANG H X. Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage[J]. International Journal of Low-Carbon Technologies,2020,15:458 − 470. DOI: 10.1093/ijlct/ctaa006
    [16]
    CHEN F, MAO J F, CHEN S Y, et al. Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system[J]. Applied Thermal Engineering,2018,130:698 − 709. DOI: 10.1016/j.applthermaleng.2017.11.062
    [17]
    ANSYS Fluent Inc. ANSYS fluent user's guide[M]. Canonsburg, PA: [s.n.], 2013.
    [18]
    杨卫波, 杨彬彬, 汪峰. 相变混凝土能量桩热-力学特性的数值模拟与试验验证[J]. 农业工程学报,2021,37(2):268 − 277. [YANG Weibo, YANG Binbin, WANG Feng. Numerical simulation and experimental validation of the thermo-mechanical characteristics of phase change concrete energy pile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(2):268 − 277. (in Chinese with English abstract)

    Numerical simulation and experimental validation of the thermo-mechanical characteristics of phase change concrete energy pile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 268-277. (in Chinese with English abstract) ]
    [19]
    张来军. 渗流场下能量桩换热及热-力耦合特性的理论和实验研究[D]. 扬州: 扬州大学, 2021.

    ZHANG Laijun. Theoretical and experimental study on heat transfer and thermo-mechanical coupling characteristics of energy piles under seepage field[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract)
  • Related Articles

    [1]MA Zihan, XING Huilin, JIN Guodong, TAN Yuyang, YAN Weichao, LI Sihai. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190-199. DOI: 10.16030/j.cnki.issn.1000-3665.202112010
    [2]LYU Panpan, SONG Jian, WU Jianfeng, WU Jichun. A numerical simulation study for controlling seawater intrusion by using hydraulic and physical barriers[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 32-40. DOI: 10.16030/j.cnki.issn.1000-3665.202007068
    [3]WANG Deng, HUO Siyuan, SUN Fang, ZENG Juan, YI Mingqi. Numerical simulation on applicability of bromide tracer method for evaluating groundwater evaporation[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 19-27. DOI: 10.16030/j.cnki.issn.1000-3665.201906062
    [4]ZHOU Yanyi, WANG Xusheng. Numerical simulation of groundwater evaporation in the Badain Jaran Desert of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 44-54. DOI: 10.16030/j.cnki.issn.1000-3665.2019.05.07
    [5]CHANG Junbin, KE Xianmin, WANG Wei, GE Jialiang, TIAN Guolin. Numerical simulation of the water exchange between radiant tube and aquifer in a seepage well[J]. Hydrogeology & Engineering Geology, 2018, 45(5): 1-8. DOI: 10.16030/j.cnki.issn.1000-3665.2018.05.01
    [6]XUYa, . Advances in numerical simulation methods of a "well-aquifer" system[J]. Hydrogeology & Engineering Geology, 2011, 38(4): 26-31.
    [7]YANGYun, . Numerical simulation of injected waste transport in the deep aquifer[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 6-11.
    [8]ZHAOBao-feng~(), . Application of intercepting underflow on groundwater exploitation based on numerical simulation[J]. Hydrogeology & Engineering Geology, 2010, 37(1): 27-30.
    [9]SHENYuan-yuan, . Research on disposal method of artifitial boundary condition in numerical simulation of groundwater flow[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 12-15.
    [10]ZHAOQuan-sheng, . Numerical simulation of salinity transport for initial impoundment of Muguandao reservoir[J]. Hydrogeology & Engineering Geology, 2008, 35(4): 6-10.
  • Cited by

    Periodical cited type(2)

    1. 曹卫平,李清源,赵敏,吴奇兴,李庆. 间歇式运行模式下黄土地基中能量桩热-力特性模型试验. 土木工程学报. 2024(09): 123-134 .
    2. 李嘉舒,戴传山,雷海燕,马非. 地埋管换热器动态热负荷下地层温度场的解析解. 水文地质工程地质. 2023(02): 198-206 . 本站查看

    Other cited types(5)

Catalog

    Article views (231) PDF downloads (109) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return