Citation: | YANG Weibo, ZHANG Laijun, WANG Feng. Effects of the pile buried pipe parameters on the thermal-mechanical coupling characteristics of energy pile under the groundwater seepage[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 176-185. DOI: 10.16030/j.cnki.issn.1000-3665.202108036 |
[1] |
金光, 张之强, 吴暄, 等. 严寒地区地源热泵地埋管周围土壤冻结影响因素的实验研究[J]. 水文地质工程地质,2017,44(6):164 − 168. [JIN Guang, ZHANG Zhiqiang, WU Xuan, et al. Experimental study on influencing factors of soil freezing around ground source heat pump buried pipe in cold region[J]. Hydrogeology & Engineering Geology,2017,44(6):164 − 168. (in Chinese with English abstract)
JIN Guang, ZHANG Zhiqiang, WU Xuan. Experimental study on influencing factors of soil freezing around ground source heat pump buried pipe in cold region[J]. Journal of Hydrogeology Engineering Geology, 2017, 44(6): 164-168. (in Chinese with English abstract)
|
[2] |
WANG Z J, ZHANG R H, FANG P F, et al. Analysis of an energy pile enduring cyclic temperature loads[J]. Geotechnical Research,2019,6(3):227 − 233. DOI: 10.1680/jgere.18.00043
|
[3] |
杨涛, 刘律智, 花永盛. 冷-热循环下能量桩热-力学特性的数值模拟[J]. 防灾减灾工程学报,2019,39(4):585 − 591. [YANG Tao, LIU Lvzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behaviour of energy pile subjected to cooling-heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):585 − 591. (in Chinese with English abstract)
YANG Tao, LIU Lvzhi, HUA Yongsheng. Numerical simulation of thermo-mechanical behaviour of energy pile subjected to cooling-heating cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 585-591. (in Chinese with English abstract)
|
[4] |
吴冠中, 张丹, 程健, 等. 不同埋管形式的预制能量管桩热响应试验研究[J]. 防灾减灾工程学报,2019,39(4):615 − 621. [WU Guanzhong, ZHANG Dan, CHENG Jian, et al. Thermal response tests on PHC energy piles with different configuration of heat exchange loop[J]. Journal of Disaster Prevention and Mitigation Engineering,2019,39(4):615 − 621. (in Chinese with English abstract)
WU Guanzhong, ZHANG Dan, CHENG Jian, et al. Thermal response tests on PHC energy piles with different configuration of heat exchange loop[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(4): 615-621. (in Chinese with English abstract)
|
[5] |
常虹, 李洋, 李宗效. 不同埋管形式对混凝土能量桩受力特性的数值模拟研究[J]. 吉林建筑大学学报,2021,38(1):27 − 33. [CHANG Hong, LI Yang, LI Zongxiao. Numerical simulation study on mechanical characteristics of concrete energy pile under different buried pipe forms[J]. Journal of Jilin Jianzhu University,2021,38(1):27 − 33. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0185.2021.01.005
CHANG Hong, LI Yang, LI Zongxiao. Numerical simulation study on mechanical characteristics of concrete energy pile under different buried pipe forms[J]. Journal of Ji lin Jian zhu University, 2021, 38(1): 27-33. (in Chinese with English abstract) DOI: 10.3969/j.issn.1009-0185.2021.01.005
|
[6] |
赵蕾, 高林, 张爽, 等. 不同埋管形式能量桩换热性能与承载性能的对比研究[J]. 安全与环境学报,2020,20(1):81 − 90. [ZHAO Lei, GAO Lin, ZHANG Shuang, et al. Exploration of the thermo-mechanical features of energy piles in regard to the different types of buried pipes[J]. Journal of Safety and Environment,2020,20(1):81 − 90. (in Chinese with English abstract)
ZHAO Lei, GAO Lin, ANG Shuang, et al. Exploration of the thermo-mechanical features of energy piles in regard to the different types of buried pipes[J]. Journal of Safety and Environment, 2020, 20(1): 81-90. (in Chinese with English abstract)
|
[7] |
王成龙, 刘汉龙, 孔纲强, 等. 不同埋管形式下能量桩热力学特性模型试验研究[J]. 工程力学,2017,34(1):85 − 91. [WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Model tests on thermal mechanical behaviour of energy piles influenced with heat exchangers types[J]. Engineering Mechanics,2017,34(1):85 − 91. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2015.05.0455
WANG Chenglong, LIU Hanlong, KONG Gangqiang, et al. Model tests on thermal mechanical behaviour of energy piles influenced with heat exchangers types[J]. Engineering Mechanics, 2017, 34(1): 85-91. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2015.05.0455
|
[8] |
PARK S, LEE S, LEE D, et al. Effect of thermal interference on energy piles considering various configurations of heat exchangers[J]. Energy and Buildings,2019,199:381 − 401. DOI: 10.1016/j.enbuild.2019.07.008
|
[9] |
PARK S, LEE S, OH K, et al. Engineering chart for thermal performance of cast-in-place energy pile considering thermal resistance[J]. Applied Thermal Engineering,2018,130:899 − 921. DOI: 10.1016/j.applthermaleng.2017.11.065
|
[10] |
GO G H, LEE S R, YOON S, KANG H. Design of spiral coil PHC energy pile considering effective borehole thermal resistance and groundwater advection effects[J]. Applied Energy,2014,125:165 − 178. DOI: 10.1016/j.apenergy.2014.03.059
|
[11] |
YOU S, CHENG X H, YU C L, et al. Effects of groundwater flow on the heat transfer performance of energy piles:Experimental and numerical analysis[J]. Energy and Buildings,2017,155:249 − 259. DOI: 10.1016/j.enbuild.2017.09.023
|
[12] |
WANG D Q, LU L, ZHANG W K, et al. Numerical and analytical analysis of groundwater influence on the pile geothermal heat exchanger with cast-in spiral coils[J]. Applied Energy,2015,160:705 − 714. DOI: 10.1016/j.apenergy.2015.04.037
|
[13] |
ZHANG W K, YANG H X, FANG L, et al. Study on heat transfer of pile foundation ground heat exchanger with three-dimensional groundwater seepage[J]. International Journal of Heat and Mass Transfer,2017,105:58 − 66. DOI: 10.1016/j.ijheatmasstransfer.2016.09.066
|
[14] |
GO G H, LEE S R, KANG H B, et al. A novel hybrid design algorithm for spiral coil energy piles that considers groundwater advection[J]. Applied Thermal Engineering,2015,78:196 − 208. DOI: 10.1016/j.applthermaleng.2014.12.060
|
[15] |
YOU T, YANG H X. Influences of different factors on the three-dimensional heat transfer of spiral-coil energy pile group with seepage[J]. International Journal of Low-Carbon Technologies,2020,15:458 − 470. DOI: 10.1093/ijlct/ctaa006
|
[16] |
CHEN F, MAO J F, CHEN S Y, et al. Efficiency analysis of utilizing phase change materials as grout for a vertical U-tube heat exchanger coupled ground source heat pump system[J]. Applied Thermal Engineering,2018,130:698 − 709. DOI: 10.1016/j.applthermaleng.2017.11.062
|
[17] |
ANSYS Fluent Inc. ANSYS fluent user's guide[M]. Canonsburg, PA: [s.n.], 2013.
|
[18] |
杨卫波, 杨彬彬, 汪峰. 相变混凝土能量桩热-力学特性的数值模拟与试验验证[J]. 农业工程学报,2021,37(2):268 − 277. [YANG Weibo, YANG Binbin, WANG Feng. Numerical simulation and experimental validation of the thermo-mechanical characteristics of phase change concrete energy pile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2021,37(2):268 − 277. (in Chinese with English abstract)
Numerical simulation and experimental validation of the thermo-mechanical characteristics of phase change concrete energy pile[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(2): 268-277. (in Chinese with English abstract) ]
|
[19] |
张来军. 渗流场下能量桩换热及热-力耦合特性的理论和实验研究[D]. 扬州: 扬州大学, 2021.
ZHANG Laijun. Theoretical and experimental study on heat transfer and thermo-mechanical coupling characteristics of energy piles under seepage field[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract)
|
1. |
曹卫平,李清源,赵敏,吴奇兴,李庆. 间歇式运行模式下黄土地基中能量桩热-力特性模型试验. 土木工程学报. 2024(09): 123-134 .
![]() | |
2. |
李嘉舒,戴传山,雷海燕,马非. 地埋管换热器动态热负荷下地层温度场的解析解. 水文地质工程地质. 2023(02): 198-206 .
![]() |