ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
CUI Huqun, LI Wenpeng, KANG Weidong, et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 22-28. DOI: 10.16030/j.cnki.issn.1000-3665.202111019
Citation: CUI Huqun, LI Wenpeng, KANG Weidong, et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 22-28. DOI: 10.16030/j.cnki.issn.1000-3665.202111019

A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River

More Information
  • Received Date: November 14, 2021
  • Revised Date: January 04, 2022
  • Available Online: April 25, 2022
  • Published Date: May 17, 2022
  • Rainfall and irrigation are important sources of recharge for shallow groundwater in the middle reaches of Heihe River . There is no mature monitoring method and empirical data for evaluating infiltration recharge by introducing empirical parameters for a long time. In this paper, artificial bromide tracer method is used to study groundwater infiltration under different irrigation conditions and different depths in the middle reaches of the Heihe River. The results show that under the condition of rainfall in the study area, the annual average transport distance of the peak content of bromine ion in the vadose zone is 21.25 cm, the annual average recharge is 11.93 mm, and the infiltration recharge coefficient is 0.1. Under the condition of large irrigation amount, the average annual migration distance of the peak content of bromine ion in the vadose zone is 86.51 cm, the average annual recharge is 148.7 mm, and the infiltration recharge coefficient is 0.16. Under the condition of small irrigation amount, the average annual migration distance of the peak content of bromine ion in the vadose zone is 46.35 cm, the average annual the downward zone of unidirectional infiltration of water in the unsaturated zone, which is generally suitable in the recharge is 53.81 mm, and the infiltration recharge coefficient is 0.07. Under drip irrigation, the average annual moving distance of the peak value of bromine ion content in the vadose zone is 41.72 cm, the average annual supply is 52.6 mm, and the infiltration recharge coefficient is 0.11. Artificial bromide tracers should be placed in northwest inland basin more than 3 m. The results can provide parameters for the evaluation of groundwater resources in the Heihe River Basin, which is of great significance for scientific understanding of groundwater resources and rational development and utilization in northwest inland basins.
  • [1]
    张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版, 北京: 地质出版社, 2011

    ZHANG Renquan, LIANG Xing, JIN Menggui, et al. Fundamental of hydrogeology [M]. 6nd ed. Beijing: Geology Publishing House, 2011. (in Chinese)
    [2]
    顾慰祖, 庞忠和, 王全九, 等. 同位素水文学[M]. 北京: 科学出版社, 2011

    GU Weizu, PANG Zhonghe, WANG Quanjiu, et al. Isotope Hydrology[M]. Beijing: Science Press, 2011. (in Chinese)
    [3]
    QIN D J, QIAN Y P, HAN L F, et al. Assessing impact of irrigation water on groundwater recharge and quality in arid environment using CFCs, tritium and stable isotopes, in the Zhangye Basin, Northwest China[J]. Journal of Hydrology,2011,405(1/2):194 − 208.
    [4]
    霍思远, 靳孟贵. 不同降水及灌溉条件下的地下水入渗补给规律[J]. 水文地质工程地质,2015,42(5):6 − 13. [HUO Siyuan, JIN Menggui. Effects of precipitation and irrigation on vertical groundwater recharge[J]. Hydrogeology & Engineering Geology,2015,42(5):6 − 13. (in Chinese with English abstract)
    [5]
    王仕琴, 宋献方, 肖国强, 等. 基于氢氧同位素的华北平原降水入渗过程[J]. 水科学进展,2009,20(4):495 − 501. [WANG Shiqin, SONG Xianfang, XIAO Guoqiang, et al. Appliance of oxygen and hydrogen isotope in the process of precipitation infiltration in the shallow groundwater areas of North China Plain[J]. Advances in Water Science,2009,20(4):495 − 501. (in Chinese with English abstract) DOI: 10.3321/j.issn:1001-6791.2009.04.007
    [6]
    张敏, 平建华, 禹言, 等. 同位素技术解析安阳河与地下水相互作用[J]. 水文地质工程地质,2019,46(6):31 − 39. [ZHANG Min, PING Jianhua, YU Yan, et al. Isotope analyses of the interaction between the Anyang River and groundwater[J]. Hydrogeology & Engineering Geology,2019,46(6):31 − 39. (in Chinese with English abstract)
    [7]
    申豪勇, 梁永平, 唐春雷, 等. 应用氯量平衡法估算娘子关泉域典型岩溶区的降水入渗系数[J]. 水文地质工程地质,2018,45(6):31 − 35. [SHEN Haoyong, LIANG Yongping, TANG Chunlei, et al. Estimation of the infiltration coefficient based on chloride mass balance in a typical karst region of the Niangziguan spring area[J]. Hydrogeology & Engineering Geology,2018,45(6):31 − 35. (in Chinese with English abstract)
    [8]
    吴庆华, 张薇, 蔺文静, 等. 人工示踪方法评价地下水入渗补给及其优先流程度—以河北栾城和衡水为例[J]. 地球学报,2014,35(4):495 − 502. [WU Qinghua, ZHANG Wei, LIN Wenjing, et al. The estimation of groundwater recharge and preferential flow based on the applied tracers: a case study of Luancheng and Hengshui areas in Hebei Province[J]. Acta Geoscientica Sinica,2014,35(4):495 − 502. (in Chinese with English abstract) DOI: 10.3975/cagsb.2014.04.12
    [9]
    谭秀翠, 杨金忠, 宋雪航, 等. 华北平原地下水补给量计算分析[J]. 水科学进展,2013,24(1):76 − 84. [TAN Xiucui, YANG Jinzhong, SONG Xuehang, et al. Estimating of groundwater recharge in North China Plain[J]. Advances in Water Science,2013,24(1):76 − 84. (in Chinese with English abstract)
    [10]
    汪丙国. 地下水补给评价方法研究: 以华北平原为例[D]. 武汉: 中国地质大学, 2008

    WANG Bingguo. Research on estimating methods of groundwater recharge: A case study in North China plain[D]. Wuhan: China University of Geosciences, 2008. (in Chinese with English abstract)
    [11]
    姜光辉, 郭芳, 汤庆佳, 等. 人工示踪技术在岩溶地区水文地质勘察中的应用[J]. 南京大学学报(自然科学),2016,52(3):503 − 511. [JIANG Guanghui, GUO Fang, TANG Qingjia, et al. Application of tracer test techniques in hydrogeological survey in karst area[J]. Journal of Nanjing University(Natural Sciences),2016,52(3):503 − 511. (in Chinese with English abstract)
    [12]
    葛孟琰, 马瑞, 孙自永, 等. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例[J]. 地球科学,2018,43(11):4246 − 4255. [GE Mengyan, MA Rui, SUN Ziyong, et al. Using heat tracer to estimate river water and groundwater interactions in alpine and cold regions: a case study of hulugou watershed in upper reach of Heihe river[J]. Earth Science,2018,43(11):4246 − 4255. (in Chinese with English abstract)
    [13]
    李刚, 马佰衡, 周仰效, 等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质,2021,48(4):48 − 54. [LI Gang, MA Baiheng, ZHOU Yangxiao, et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology,2021,48(4):48 − 54. (in Chinese with English abstract)
    [14]
    王登, 霍思远, 孙芳, 等. 人工溴示踪法评价潜水蒸发可行性数值模拟[J]. 水文地质工程地质,2020,47(1):19 − 27. [WANG Deng, HUO Siyuan, SUN Fang, et al. Numerical simulation on applicability of bromide tracer method for evaluating groundwater evaporation[J]. Hydrogeology & Engineering Geology,2020,47(1):19 − 27. (in Chinese with English abstract)
    [15]
    王健, 梁杏, 靳孟贵, 等. 运用溴离子示踪法评价玛纳斯河流域平原区潜水蒸发[J]. 地球科学,2020,45(3):1051 − 1060. [WANG Jian, LIANG Xing, JIN Menggui, et al. Evaluation of phreatic evaporation in Manas river Basin plain by bromine tracing method[J]. Earth Science,2020,45(3):1051 − 1060. (in Chinese with English abstract)
    [16]
    曹建廷, 谢悦波, 陈志辉, 等. 甘肃省黑河干流细土平原区灌溉水入渗运移的初步研究[J]. 水文地质工程地质,2002,29(4):1 − 4. [CAO Jianting, XIE Yuebo, CHEN Zhihui, et al. Preliminary research on the seepage and transportation of irrigation water in the plain of main stream region of Heihe River Gansu Province[J]. Hydrogeology & Engineering Geology,2002,29(4):1 − 4. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3665.2002.04.001
    [17]
    陈志辉, 程旭学. 河西走廊灌溉水田间入渗补给地下水机理研究[J]. 西安工程学院学报,2002,24(1):33 − 38. [CHEN Zhihui, CHENG Xuxue. Research on the irrigation water's mechanism of infiltration to supply ground water in the field in Hexi Corridor's irrigation region[J]. Journal of Xi'an Engineering University,2002,24(1):33 − 38. (in Chinese with English abstract)
    [18]
    聂振龙, 连英立, 段宝谦, 等. 利用包气带环境示踪剂评估张掖盆地降水入渗速率[J]. 地球学报,2011,32(1):117 − 122. [NIE Zhenlong, LIAN Yingli, DUAN Baoqian, et al. Application of unsaturated zone environmental tracers to the estimation of rainfall infiltrating rate in the Zhangye Basin, northwestern China[J]. Acta Geoscientica Sinica,2011,32(1):117 − 122. (in Chinese with English abstract) DOI: 10.3975/cagsb.2011.01.15
    [19]
    SCANLON B R, HEALY R W, COOK P G. Choosing appropriate techniques for quantifying groundwater recharge[J]. Hydrogeology Journal,2002,10(1):18 − 39. DOI: 10.1007/s10040-001-0176-2
  • Related Articles

    [1]LIU Yi, SHI Peidong, LIU Miao, XU Kairan, ZHANG Ning, JIANG Peng. Analysis of water balance in the middle reaches of the Yellow River based on ecological water demand: A case study on Qinhe River Basin[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 30-40. DOI: 10.16030/j.cnki.issn.1000-3665.202304043
    [2]QI Xiaofan, LI Wenpeng, CUI Huqun, KANG Weidong, LIU Zhenying, SHAO Xinmin. Study on the conversion mechanism of surface water and groundwater in the middle reaches of the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 29-43. DOI: 10.16030/j.cnki.issn.1000-3665.202202003
    [3]FENG Wei, LI Wenpeng, SHAO Xinmin, QI Xiaofan, LI Tao. Research on the dynamic characteristics of groundwater and regulation capability of aquifers in the intermediate section of Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 11-21. DOI: 10.16030/j.cnki.issn.1000-3665.202201013
    [4]LI Wenpeng, SHAO Xinmin, QI Xiaofan, WU Xi, WANG Wenxiang, AN Yonghui, SUN Yinhang. Estimation of groundwater lateral flow in the southern mountainous area of the middle Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 1-10. DOI: 10.16030/j.cnki.issn.1000-3665.202202001
    [5]QI Zixuan, ZHOU Jinlong, JI Yanzhen, SUN Ying, WANG Xinzhong, ZHENG Yulian. Seasonal variationin recharge of infiltration from precipitation for the inland basins of northwestern China: taking the Changji groundwater balance test station in Xinjiang as an example[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 12-20. DOI: 10.16030/j.cnki.issn.1000-3665.201911007
    [6]CHEN Zongliang, YE Zhennan, WANG Zhihong, WANG Gaofeng, GAO Youlong, TIAN Yuntao. Development characteristics and disaster effect of the Quaternary sediments in the middle and upper reaches of the Bailongiang River Basin[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 29-36. DOI: 10.16030/j.cnki.issn.1000-3665.2019.02.05
    [7]KANG Ning, CUI Huqun. Study on multi-objective programming model of sustainable utilization of water resources in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 15-22. DOI: 10.16030/j.cnki.issn.1000-3665.2018.06.03
    [8]HUANGLi, . Application of Distributed Temperature Sensing to Study Groundwater-Surface Water Interactions in the Heihe River Basin[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 1-6.
    [9]HOUXin-wei, . Study on transforming relationship among surface water,precipitation and groundwater along Fenhe River in Taiyuan Basin[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 38-41.
    [10]BAIFu~, . The macroscopic control and optimized utilization of water resources in the region of main stream of the Heihe River[J]. Hydrogeology & Engineering Geology, 2008, 35(2): 87-91.
  • Cited by

    Periodical cited type(4)

    1. 康凤新,郑婷婷,冯亚伟,徐秋晓,刘彬涛,王义生,李传谟. 北方岩溶区降水入渗补给系数及补给机制:以羊庄岩溶水系统为例. 地质科技通报. 2024(02): 268-282 .
    2. 黄鹏,魏旭,陈林,梁树,彭小桐. 主动抗浮技术在新建建筑场地应用——以天府国际健康服务中心为例. 四川建筑. 2024(03): 194-197 .
    3. 张震域,唐娜,吴彦昭,董国涛,赵沛. 黑河中游耕地变化与节水灌溉对地表耗水与地下水的影响. 人民黄河. 2024(08): 104-109 .
    4. 罗益斌,陈继彬,王媛媛,沈攀. 膨胀土地区地下结构抗浮失效机理及主动抗浮措施应用. 水文地质工程地质. 2022(06): 64-73 . 本站查看

    Other cited types(1)

Catalog

    Article views (400) PDF downloads (335) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return