Citation: | GUO Huaming, GAO Zhipeng, XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153-163. DOI: 10.16030/j.cnki.issn.1000-3665.202202052 |
[1] |
PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science,2020,368:845 − 850. DOI: 10.1126/science.aba1510
|
[2] |
张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质,2010,37(3):551 − 562. [ZHANG Fucun, WEN Dongguang, GUO Jianqiang, et al. research progress and prospect of geological environment in main endemic disease area[J]. Geology in China,2010,37(3):551 − 562. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2010.03.002
|
[3] |
郭华明, 倪萍, 贾永峰, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘,2014,21(4):1 − 12. [GUO Huaming, NI Ping, JIA Yongfeng, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers,2014,21(4):1 − 12. (in Chinese with English abstract)
|
[4] |
ZHOU Y Z, ZENG Y Y, ZHOU J L, et al. Distribution of groundwater arsenic in Xinjiang, P. R. China[J]. Appl Geochem,2017,77:116 − 125. DOI: 10.1016/j.apgeochem.2016.09.005
|
[5] |
WANG Z, GUO H M, XIU W, et al. High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms[J]. Sci Total Environ,2018,640/641:194 − 206. DOI: 10.1016/j.scitotenv.2018.05.255
|
[6] |
HAN S B, ZHANG F C, ZHANG H, et al. Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China[J]. J Geochem Explor,2013,135:71 − 78. DOI: 10.1016/j.gexplo.2012.11.005
|
[7] |
GUO Q, GUO H M, YANG Y C, et al. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P. R. China[J]. J Hydrol,2014,518:464 − 476. DOI: 10.1016/j.jhydrol.2014.06.026
|
[8] |
张翼龙, 曹文庚, 于娟, 等. 河套地区典型剖面下地下水砷分布及地质环境特征研究[J]. 干旱区资源与环境,2010,24(12):167 − 171. [ZHANG Yilong, CAO Wengeng YU Juan, et al. The geological environment characteristics and distribution of groundwater arsenic in the typical section of Hetao Plain[J]. Journal of Arid Land Resources and Environment,2010,24(12):167 − 171. (in Chinese with English abstract)
|
[9] |
高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘,2014,21(4):13 − 29. [GAO Cunrong, LIU Wenbo, FENG Cui’E, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao Plain in Inner Mongolia, China[J]. Earth Science Frontiers,2014,21(4):13 − 29. (in Chinese with English abstract)
|
[10] |
GUO H M, WEN D G, LIU Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Appl Geochem,2014,41:196 − 217. DOI: 10.1016/j.apgeochem.2013.12.016
|
[11] |
CAO W G, GUO H M, ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Sci Total Environ,2018,613/614:958 − 968. DOI: 10.1016/j.scitotenv.2017.09.182
|
[12] |
SMEDLEY P L, ZHANG M, ZHANG G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Appl Geochem,2003,18:1453 − 1477. DOI: 10.1016/S0883-2927(03)00062-3
|
[13] |
XIE X J, WANG Y X, ELLIS A, et al. Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China[J]. J Hydrol,2013,498:103 − 112. DOI: 10.1016/j.jhydrol.2013.06.024
|
[14] |
ZHANG J W, MA T, FENG L, et al. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China[J]. Sci Total Environ,2017,584/585:458 − 468. DOI: 10.1016/j.scitotenv.2017.01.029
|
[15] |
GUO H M, ZHANG D, WENG D G, et al. Arsenic mobilization in aquifers of the southwest Songnen basin, P. R. China: Evidences from chemical and isotopic characteristics[J]. Sci Total Environ,2014,490:590 − 602. DOI: 10.1016/j.scitotenv.2014.05.050
|
[16] |
GAN Y Q, WANG Y X, DUAN Y H, et al. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China[J]. J Geochem Explor,2014,138:81 − 93. DOI: 10.1016/j.gexplo.2013.12.013
|
[17] |
WANG Y, JIAO J J, CHERRY J A. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China[J]. Sci Total Environ,2012,427/428:286 − 297. DOI: 10.1016/j.scitotenv.2012.04.006
|
[18] |
HOU Q X, SUN J C, JING J H, et al. A regional scale investigation on groundwater arsenic in different types of aquifers in the Pearl River Delta, China[J]. Geofluids,2018:3471295.
|
[19] |
RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science,2013,341(6148):866 − 868. DOI: 10.1126/science.1237484
|
[20] |
ZHU Y G, YOSHINAGA M, ZHAO F J. Earth abides arsenic biotransformations[J]. Annu Rev Earth Pl Sc,2014,42:443 − 467. DOI: 10.1146/annurev-earth-060313-054942
|
[21] |
WANG Y X, PI K F, FENDORF S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Sci Rev,2019,189:79 − 98. DOI: 10.1016/j.earscirev.2017.10.007
|
[22] |
ZHENG Y. Global solutions to a silent poison[J]. Science,2020,368:818 − 819. DOI: 10.1126/science.abb9746
|
[23] |
GU B J, GE Y, CHANG S X, et al. Nitrate in groundwater of China: Sources and driving forces[J]. Global Environ Change,2013,23:1112 − 1121. DOI: 10.1016/j.gloenvcha.2013.05.004
|
[24] |
陈劲松, 周金龙, 魏兴, 等. 新疆喀什噶尔河流域平原区地下水“三氮”含量分布特征及影响因素分析[J]. 环境化学,2020,39(11):3246 − 3254. [CHEN Jinsong, ZHOU Jinlong, WEI Xing, et al. Spatial distribution and influencing factors of “three-nitrogen” of groundwater in the plain of Kashgar River basin, Xinjiang[J]. Environmental Chemistry,2020,39(11):3246 − 3254. (in Chinese with English abstract) DOI: 10.7524/j.issn.0254-6108.2019081904
|
[25] |
RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Res,2008,42(16):4215 − 4232. DOI: 10.1016/j.watres.2008.07.020
|
[26] |
李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)
|
[27] |
NORRMAN J, SPARRENBOM C J, BERG M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope ( δ15N) values[J]. Appl Geochem,2015,61:248 − 258. DOI: 10.1016/j.apgeochem.2015.06.009
|
[28] |
SMITH R L, KENT D B, REPERT D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochim Cosmochim Acta,2017,196:102 − 120. DOI: 10.1016/j.gca.2016.09.025
|
[29] |
WENG T, LIU C, KAO Y, et al. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater[J]. Sci Total Environ,2017,578:167 − 185. DOI: 10.1016/j.scitotenv.2016.11.013
|
[30] |
JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Sci Total Environ,2018,643:967 − 993. DOI: 10.1016/j.scitotenv.2018.06.201
|
[31] |
DU Y, DENG Y M, MA T, et al. Enrichment of geogenic ammonium in Quaternary alluvial-lacustrine aquifer systems: Evidence from carbon isotopes and DOM characteristics[J]. Environ Sci Technol,2020,54:6104 − 6114. DOI: 10.1021/acs.est.0c00131
|
[32] |
HUG S J, LEUPIN O X, BERG M. Bangladesh and Vietnam: Different groundwater compositions require different approaches to arsenic mitigation[J]. Environ Sci Technol,2008,42:6318 − 6323.
|
[33] |
BERG M, STENGEL C, TRANG P T K, et al. Magnitude of arsenic pollution in the Mekong and Red River Deltas — Cambodia and Vietnam[J]. Sci Total Environ,2007,372:413 − 425. DOI: 10.1016/j.scitotenv.2006.09.010
|
[34] |
GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls[J]. Sci Total Environ,2016,541:1172 − 1190. DOI: 10.1016/j.scitotenv.2015.10.018
|
[35] |
CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth’s nitrogen cycle[J]. Science,2010,330:192 − 196. DOI: 10.1126/science.1186120
|
[36] |
KELLEY C J, KELLER C K, EVANS R D, et al. Nitrate nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field[J]. Soil Biol Biochem,2013,57:731 − 738. DOI: 10.1016/j.soilbio.2012.10.017
|
[37] |
LUTZ S R, TRAUTH N, MUSOLFF A, et al. How important is denitrification in riparian zones? combining end-member mixing and isotope modeling to quantify nitrate removal from riparian groundwater[J]. Water Resour Res,2020,56:e2019WR025528.
|
[38] |
RÜTTING T, BOECKX P, MULLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences,2011,8:1779 − 1791. DOI: 10.5194/bg-8-1779-2011
|
[39] |
KRAFT B, TEGETMEYER H E, SHARMA R, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science,2014,345:676 − 679. DOI: 10.1126/science.1254070
|
[40] |
ZHU G B, WANG S Y, WANG W D, et al. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces[J]. Nat Geosci,2013,6:103 − 107. DOI: 10.1038/ngeo1683
|
[41] |
YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nat Geosci,2012,5:538 − 541. DOI: 10.1038/ngeo1530
|
[42] |
NIKOLENKO O, JURADO A, BORGES A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Sci Total Environ,2018,621:1415 − 1432. DOI: 10.1016/j.scitotenv.2017.10.086
|
[43] |
BÖHLKE J K, SMITH R L, MILLER D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resour Res,2006,42:W05411.
|
[44] |
SMITH R L, BÖHLKE J K, SONG B, et al. , 2015. Role of anaerobic ammonium oxidation (Anammox) in nitrogen removal from a freshwater aquifer[J]. Environ Sci Technol,2015,49:12169 − 12177. DOI: 10.1021/acs.est.5b02488
|
[45] |
DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environ Sci Technol,2014,48:10641 − 10647. DOI: 10.1021/es503113s
|
[46] |
HARDISON A K, ALGAR C K, GIBLIN A E, et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production[J]. Geochim Cosmochim Acta,2015,164:146 − 160. DOI: 10.1016/j.gca.2015.04.049
|
[47] |
BURGIN A J, HAMILTON S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front Ecol Environ,2007,5(2):89 − 96. DOI: 10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
|
[48] |
DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone[J]. Environ Pollut,2017,231:379 − 386. DOI: 10.1016/j.envpol.2017.08.027
|
[49] |
PLUMMER P, TOBIAS C, CADY D. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide[J]. J Geophys Res Biogeosci,2015,120:1958 − 1972.
|
[50] |
WANG SY, ZHU GB, ZHUANG LJ, et al. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world[J]. ISME J,2020,14:151 − 163. DOI: 10.1038/s41396-019-0513-x
|
[51] |
LI X, HOU L, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environ Sci Technol,2015,49:11560 − 11568. DOI: 10.1021/acs.est.5b03419
|
[52] |
TOMASZEWSKI M, CEMA G, ZIEMBINSKA-BUCZYNSKA A. Influence of temperature and pH on the Anammox process: A review and meta-analysis[J]. Chemosphere,2017,182:203 − 214. DOI: 10.1016/j.chemosphere.2017.05.003
|
[53] |
ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnol Oceanogr,2016,61:365 − 381. DOI: 10.1002/lno.10220
|
[54] |
CLÉMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biol, Biochem,2005,37:2323 − 2328. DOI: 10.1016/j.soilbio.2005.03.027
|
[55] |
SALK K R, ERLER D V, EYRE B D, et al. Unexpectedly high degree of Anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique[J]. Geochim Cosmochim Acta,2017,211:64 − 78. DOI: 10.1016/j.gca.2017.05.012
|
[56] |
ROBERTSON E K, THAMDRUP B. The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment[J]. Geochim, Cosmochim Acta,2017,205:84 − 99. DOI: 10.1016/j.gca.2017.02.014
|
[57] |
HORNEK R, POMMERENING- RÖSER A, KOOPS H-P, et al. Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment[J]. J Microbiol Meth,2006,66(1):147 − 155. DOI: 10.1016/j.mimet.2005.11.001
|
[58] |
KOWALCHUK G A, STEPHEN J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annu Rev Microbiol,2001,55:485 − 529. DOI: 10.1146/annurev.micro.55.1.485
|
[59] |
KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,2005,437:543 − 546. DOI: 10.1038/nature03911
|
[60] |
CAFFREY J M, BANO N, KALANETRA K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. ISME J,2007,1(7):660 − 662. DOI: 10.1038/ismej.2007.79
|
[61] |
MOSIER A C, FRANCIS C A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay Estuary[J]. Environ Microbiol,2008,10(11):3002 − 3016. DOI: 10.1111/j.1462-2920.2008.01764.x
|
[62] |
SANTORO A E, FRANCIS C A, DE SIEYES N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and Archaea across physicochemical gradients in a subterranean estuary[J]. Environ Microbiol,2008,10(4):1068 − 1079. DOI: 10.1111/j.1462-2920.2007.01547.x
|
[63] |
LIU T T, YANG H. Different nutrient levels, rather than seasonal changes, significantly affected the spatiotemporal dynamic changes of ammonia-oxidizing microorganisms in Lake Taihu[J]. World J Microbiol Biotechnol,2021,37(6):1 − 11.
|
[64] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nat Rev Microbiol,2018,16(5):263 − 276. DOI: 10.1038/nrmicro.2018.9
|
[65] |
SOARES M. Biological denitrification of groundwater[J]. Water Air Soil Poll,2000,123(1):183 − 193.
|
[66] |
DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chem Eng J,2019,362:922 − 937. DOI: 10.1016/j.cej.2019.01.069
|
[67] |
SUN W J, SIERRA-ALVAREZ R, FERNANDEZ N, et al. Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures[J]. FEMS Microbiol Ecol,2009,68(1):72 − 85. DOI: 10.1111/j.1574-6941.2009.00653.x
|
[68] |
MOORE T A, XING Y P, LAZENBY B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J]. Environ Sci Technol,2011,45(17):7217 − 7225. DOI: 10.1021/es201243t
|
[69] |
XIU W, KE T T, LLOYD J R, et al. Understanding microbial arsenic-mobilization in multiple aquifers: Insight from DNA and RNA analyses[J]. Environ Sci Technol,2021,55(22):15181 − 15195. DOI: 10.1021/acs.est.1c04117
|
[70] |
BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiol Ecol,1996,21(2):131 − 138. DOI: 10.1111/j.1574-6941.1996.tb00340.x
|
[71] |
SEITZ H J, CYPIONKA H. Chemolithotrophic growth of desulfovibrio-desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite[J]. Arch Microbiol,1986,146(1):63 − 67. DOI: 10.1007/BF00690160
|
[72] |
HOOR A T T. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans[J]. Anton Leeuw,1981,47(3):231 − 243. DOI: 10.1007/BF00403394
|
[73] |
JØRGENSEN B B. Mineralization of organic-matter in the sea bed-the role of sulfate reduction[J]. Nature,1982,296:643 − 645. DOI: 10.1038/296643a0
|
[74] |
KELLY D P, WOOD A P. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain[J]. Int J Syst Evol Microbiol,2000,50:547 − 550. DOI: 10.1099/00207713-50-2-547
|
[75] |
HUANG S, CHEN C, PENG X, et al. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biol Biochem,2016,98:148 − 158. DOI: 10.1016/j.soilbio.2016.04.012
|
[76] |
POSTMA D, LARSEN F, MINH HUE N T, et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling[J]. Geochim Cosmochim Acta,2007,71(21):5054 − 5071. DOI: 10.1016/j.gca.2007.08.020
|
[77] |
FENDORF S, MICHAEL H A, VAN GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science,2010,328:1123 − 1127. DOI: 10.1126/science.1172974
|
[78] |
GUO H M, ZHOU Y Z, JIA Y F, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: Evidence from multiple isotope approaches[J]. Environ Sci Technol,2016,50(23):12650 − 12659. DOI: 10.1021/acs.est.6b03460
|
[79] |
GLODOWSKA M, STOPELLI E, SCHNEIDER M, et al. Role of in situ natural organic matter in mobilizing As during microbial reduction of Fe(III)-mineral-bearing aquifer sediments from Hanoi (Vietnam)[J]. Environ Sci Technol,2020,54(7):4149 − 4159. DOI: 10.1021/acs.est.9b07183
|
[80] |
QIAO W, GUO H M, HE C, et al. Molecular evidence of arsenic mobility linked to biodegradable organic matter[J]. Environ Sci Technol,2020,54(12):7280 − 7290. DOI: 10.1021/acs.est.0c00737
|
[81] |
ZHANG D, GUO H M, NI P, et al. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater[J]. J Hazard Mater,2017,321:228 − 237. DOI: 10.1016/j.jhazmat.2016.09.021
|
[82] |
GLODOWSKA M, SCHNEIDER M, EICHE E, et al. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer[J]. Environ Poll,2021,281:117012. DOI: 10.1016/j.envpol.2021.117012
|
[83] |
GAO Z P, JIA Y F, GUO H M, et al. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model[J]. Water Resour Res,2020,56(2):e2019WR025492.
|
[84] |
BISWAS A, GUSTAFSSON J P, NEIDHARDT H, et al. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling[J]. Water Res,2014,55:30 − 39. DOI: 10.1016/j.watres.2014.02.002
|
[85] |
SCHITTICH A R, WÜNSCH U J, KULKARNI H V, et al. Investigating fluorescent organic-matter composition as a key predictor for arsenic mobility in groundwater aquifers[J]. Environ Sci Technol,2018,52(22):13027 − 13036. DOI: 10.1021/acs.est.8b04070
|
[86] |
XIU W, LLOYD J, GUO H M, et al. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization[J]. Environ Int,2020,136:105489. DOI: 10.1016/j.envint.2020.105489
|
[87] |
GAO Z P, WENG H C, GUO H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. J Hydrol,2021,595:125981. DOI: 10.1016/j.jhydrol.2021.125981
|
[88] |
李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试,2022,41(1):120 − 132. [LI Jincheng, CAO Wengeng, PAN Deng, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis,2022,41(1):120 − 132. (in Chinese with English abstract)
|
[89] |
FANG J H, XIE Z M, WANG J, et al. Bacterially mediated release and mobilization of As/Fe coupled to nitrate reduction in a sediment environment[J]. Ecotoxicol Environ Saf,2021,208:111478. DOI: 10.1016/j.ecoenv.2020.111478
|
[90] |
SUN J, CHILLRUD S N, MAILLOUX B J, et al. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate[J]. Chemosphere,2016,144:1106 − 1115. DOI: 10.1016/j.chemosphere.2015.09.045
|
[91] |
SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science,2002,296:2373 − 2376. DOI: 10.1126/science.1072402
|
[92] |
MCMAHON P B, CHAPELLE F H. Redox processes and water quality of selected principal aquifer systems[J]. Groundwater,2008,46(2):259 − 271. DOI: 10.1111/j.1745-6584.2007.00385.x
|
[93] |
SCHAEFER M V, YING S C, BENNER S G, et al. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J]. Environ Sci Technol,2016,50(7):3521 − 3529. DOI: 10.1021/acs.est.5b04986
|
[94] |
DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region[J]. Sci Total Environ,2019,662:600 − 606. DOI: 10.1016/j.scitotenv.2019.01.231
|
[95] |
POSTMA D, PHAM T K T, SØ H U, et al. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam[J]. Geochim Cosmochim Acta,2016,195:277 − 292. DOI: 10.1016/j.gca.2016.09.014
|
[96] |
POSTMA D, JESSEN S, HUE N T M, et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam[J]. Geochim Cosmochim Acta,2010,74(12):3367 − 3381. DOI: 10.1016/j.gca.2010.03.024
|
[97] |
STAHL M O, HARVEY C F, VAN GEEN A, et al. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam[J]. Water Resour Res,2016,52(8):6321 − 6334. DOI: 10.1002/2016WR018891
|
[98] |
MICHIELS C C, DARCHAMBEAU F, ROLAND F A E, et al. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans[J]. Nat Geosci,2017,10:217 − 221. DOI: 10.1038/ngeo2886
|