ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
GUO Huaming, GAO Zhipeng, XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153-163. DOI: 10.16030/j.cnki.issn.1000-3665.202202052
Citation: GUO Huaming, GAO Zhipeng, XIU Wei. Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 153-163. DOI: 10.16030/j.cnki.issn.1000-3665.202202052

Research status and trend of coupling between nitrogen cycle and arsenic migration and transformation in groundwater systems

More Information
  • Received Date: February 27, 2022
  • Revised Date: March 17, 2022
  • Available Online: April 10, 2022
  • Published Date: May 17, 2022
  • The coexistence of ammonium, arsenic and dissolved iron in groundwater is a common phenomenon in aquifer systems. They have a strong interaction and affect the nitrogen cycling and the migration and transformation of arsenic in groundwater systems. Based on the systematic survey of international and national literature on the process and influencing factors of groundwater nitrogen cycling, the functional microorganisms and their characteristics related to groundwater nitrogen cycling, and the hydrogeochemical process of arsenic enrichment in groundwater, this paper deciphers effects of nitrogen cycling (including nitrification, denitrification, Feammox, Anammox, and dissimilatory nitrate reduction to ammonium) on the migration and transformation of arsenic in groundwater. We proposed that the dynamic transformation of iron oxides and dissolved Fe (II) in aquifers is an important bridge for nitrogen cycling and the migration and transformation of arsenic in groundwater. The processes of nitrogen cycling in aquifers with different redox environments, the coupling mechanism between nitrogen cycling and arsenic migration and transformation, the interactions among Fe(III) - Fe(II) cycling, nitrogen cycling, and arsenic migration and transformation, nitrogen-iron-arsenic cycling in the surface water-groundwater interaction zone and its response to human activities are important scientific issues and research trend that need to be paid attention to in this field in the future. The solution of these scientific problems is not only conducive to identifying the source, migration and transformation of nitrogen in groundwater, but also beneficial to improving the systematical understanding of enrichment mechanism of groundwater arsenic.
  • [1]
    PODGORSKI J, BERG M. Global threat of arsenic in groundwater[J]. Science,2020,368:845 − 850. DOI: 10.1126/science.aba1510
    [2]
    张福存, 文冬光, 郭建强, 等. 中国主要地方病区地质环境研究进展与展望[J]. 中国地质,2010,37(3):551 − 562. [ZHANG Fucun, WEN Dongguang, GUO Jianqiang, et al. research progress and prospect of geological environment in main endemic disease area[J]. Geology in China,2010,37(3):551 − 562. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-3657.2010.03.002
    [3]
    郭华明, 倪萍, 贾永峰, 等. 原生高砷地下水的类型、化学特征及成因[J]. 地学前缘,2014,21(4):1 − 12. [GUO Huaming, NI Ping, JIA Yongfeng, et al. Types, chemical characteristics and genesis of geogenic high-arsenic groundwater in the world[J]. Earth Science Frontiers,2014,21(4):1 − 12. (in Chinese with English abstract)
    [4]
    ZHOU Y Z, ZENG Y Y, ZHOU J L, et al. Distribution of groundwater arsenic in Xinjiang, P. R. China[J]. Appl Geochem,2017,77:116 − 125. DOI: 10.1016/j.apgeochem.2016.09.005
    [5]
    WANG Z, GUO H M, XIU W, et al. High arsenic groundwater in the Guide basin, northwestern China: Distribution and genesis mechanisms[J]. Sci Total Environ,2018,640/641:194 − 206. DOI: 10.1016/j.scitotenv.2018.05.255
    [6]
    HAN S B, ZHANG F C, ZHANG H, et al. Spatial and temporal patterns of groundwater arsenic in shallow and deep groundwater of Yinchuan Plain, China[J]. J Geochem Explor,2013,135:71 − 78. DOI: 10.1016/j.gexplo.2012.11.005
    [7]
    GUO Q, GUO H M, YANG Y C, et al. Hydrogeochemical contrasts between low and high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northern Yinchuan Basin, P. R. China[J]. J Hydrol,2014,518:464 − 476. DOI: 10.1016/j.jhydrol.2014.06.026
    [8]
    张翼龙, 曹文庚, 于娟, 等. 河套地区典型剖面下地下水砷分布及地质环境特征研究[J]. 干旱区资源与环境,2010,24(12):167 − 171. [ZHANG Yilong, CAO Wengeng YU Juan, et al. The geological environment characteristics and distribution of groundwater arsenic in the typical section of Hetao Plain[J]. Journal of Arid Land Resources and Environment,2010,24(12):167 − 171. (in Chinese with English abstract)
    [9]
    高存荣, 刘文波, 冯翠娥, 等. 干旱、半干旱地区高砷地下水形成机理研究: 以中国内蒙古河套平原为例[J]. 地学前缘,2014,21(4):13 − 29. [GAO Cunrong, LIU Wenbo, FENG Cui’E, et al. Research on the formation mechanism of high arsenic groundwater in arid and semi-arid regions: A case study of Hetao Plain in Inner Mongolia, China[J]. Earth Science Frontiers,2014,21(4):13 − 29. (in Chinese with English abstract)
    [10]
    GUO H M, WEN D G, LIU Z Y, et al. A review of high arsenic groundwater in Mainland and Taiwan, China: Distribution, characteristics and geochemical processes[J]. Appl Geochem,2014,41:196 − 217. DOI: 10.1016/j.apgeochem.2013.12.016
    [11]
    CAO W G, GUO H M, ZHANG Y L, et al. Controls of paleochannels on groundwater arsenic distribution in shallow aquifers of alluvial plain in the Hetao Basin, China[J]. Sci Total Environ,2018,613/614:958 − 968. DOI: 10.1016/j.scitotenv.2017.09.182
    [12]
    SMEDLEY P L, ZHANG M, ZHANG G, et al. Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia[J]. Appl Geochem,2003,18:1453 − 1477. DOI: 10.1016/S0883-2927(03)00062-3
    [13]
    XIE X J, WANG Y X, ELLIS A, et al. Multiple isotope (O, S and C) approach elucidates the enrichment of arsenic in the groundwater from the Datong Basin, northern China[J]. J Hydrol,2013,498:103 − 112. DOI: 10.1016/j.jhydrol.2013.06.024
    [14]
    ZHANG J W, MA T, FENG L, et al. Arsenic behavior in different biogeochemical zonations approximately along the groundwater flow path in Datong Basin, northern China[J]. Sci Total Environ,2017,584/585:458 − 468. DOI: 10.1016/j.scitotenv.2017.01.029
    [15]
    GUO H M, ZHANG D, WENG D G, et al. Arsenic mobilization in aquifers of the southwest Songnen basin, P. R. China: Evidences from chemical and isotopic characteristics[J]. Sci Total Environ,2014,490:590 − 602. DOI: 10.1016/j.scitotenv.2014.05.050
    [16]
    GAN Y Q, WANG Y X, DUAN Y H, et al. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China[J]. J Geochem Explor,2014,138:81 − 93. DOI: 10.1016/j.gexplo.2013.12.013
    [17]
    WANG Y, JIAO J J, CHERRY J A. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China[J]. Sci Total Environ,2012,427/428:286 − 297. DOI: 10.1016/j.scitotenv.2012.04.006
    [18]
    HOU Q X, SUN J C, JING J H, et al. A regional scale investigation on groundwater arsenic in different types of aquifers in the Pearl River Delta, China[J]. Geofluids,2018:3471295.
    [19]
    RODRÍGUEZ-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science,2013,341(6148):866 − 868. DOI: 10.1126/science.1237484
    [20]
    ZHU Y G, YOSHINAGA M, ZHAO F J. Earth abides arsenic biotransformations[J]. Annu Rev Earth Pl Sc,2014,42:443 − 467. DOI: 10.1146/annurev-earth-060313-054942
    [21]
    WANG Y X, PI K F, FENDORF S, et al. Sedimentogenesis and hydrobiogeochemistry of high arsenic Late Pleistocene-Holocene aquifer systems[J]. Earth-Sci Rev,2019,189:79 − 98. DOI: 10.1016/j.earscirev.2017.10.007
    [22]
    ZHENG Y. Global solutions to a silent poison[J]. Science,2020,368:818 − 819. DOI: 10.1126/science.abb9746
    [23]
    GU B J, GE Y, CHANG S X, et al. Nitrate in groundwater of China: Sources and driving forces[J]. Global Environ Change,2013,23:1112 − 1121. DOI: 10.1016/j.gloenvcha.2013.05.004
    [24]
    陈劲松, 周金龙, 魏兴, 等. 新疆喀什噶尔河流域平原区地下水“三氮”含量分布特征及影响因素分析[J]. 环境化学,2020,39(11):3246 − 3254. [CHEN Jinsong, ZHOU Jinlong, WEI Xing, et al. Spatial distribution and influencing factors of “three-nitrogen” of groundwater in the plain of Kashgar River basin, Xinjiang[J]. Environmental Chemistry,2020,39(11):3246 − 3254. (in Chinese with English abstract) DOI: 10.7524/j.issn.0254-6108.2019081904
    [25]
    RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Res,2008,42(16):4215 − 4232. DOI: 10.1016/j.watres.2008.07.020
    [26]
    李圣品, 李文鹏, 殷秀兰, 等. 全国地下水质分布及变化特征[J]. 水文地质工程地质,2019,46(6):1 − 8. [LI Shengpin, LI Wenpeng, YIN Xiulan, et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology,2019,46(6):1 − 8. (in Chinese with English abstract)
    [27]
    NORRMAN J, SPARRENBOM C J, BERG M, et al. Tracing sources of ammonium in reducing groundwater in a well field in Hanoi (Vietnam) by means of stable nitrogen isotope ( δ15N) values[J]. Appl Geochem,2015,61:248 − 258. DOI: 10.1016/j.apgeochem.2015.06.009
    [28]
    SMITH R L, KENT D B, REPERT D A, et al. Anoxic nitrate reduction coupled with iron oxidation and attenuation of dissolved arsenic and phosphate in a sand and gravel aquifer[J]. Geochim Cosmochim Acta,2017,196:102 − 120. DOI: 10.1016/j.gca.2016.09.025
    [29]
    WENG T, LIU C, KAO Y, et al. Isotopic evidence of nitrogen sources and nitrogen transformation in arsenic-contaminated groundwater[J]. Sci Total Environ,2017,578:167 − 185. DOI: 10.1016/j.scitotenv.2016.11.013
    [30]
    JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China: A review[J]. Sci Total Environ,2018,643:967 − 993. DOI: 10.1016/j.scitotenv.2018.06.201
    [31]
    DU Y, DENG Y M, MA T, et al. Enrichment of geogenic ammonium in Quaternary alluvial-lacustrine aquifer systems: Evidence from carbon isotopes and DOM characteristics[J]. Environ Sci Technol,2020,54:6104 − 6114. DOI: 10.1021/acs.est.0c00131
    [32]
    HUG S J, LEUPIN O X, BERG M. Bangladesh and Vietnam: Different groundwater compositions require different approaches to arsenic mitigation[J]. Environ Sci Technol,2008,42:6318 − 6323.
    [33]
    BERG M, STENGEL C, TRANG P T K, et al. Magnitude of arsenic pollution in the Mekong and Red River Deltas — Cambodia and Vietnam[J]. Sci Total Environ,2007,372:413 − 425. DOI: 10.1016/j.scitotenv.2006.09.010
    [34]
    GUO H M, JIA Y F, WANTY R B, et al. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls[J]. Sci Total Environ,2016,541:1172 − 1190. DOI: 10.1016/j.scitotenv.2015.10.018
    [35]
    CANFIELD D E, GLAZER A N, FALKOWSKI P G. The evolution and future of earth’s nitrogen cycle[J]. Science,2010,330:192 − 196. DOI: 10.1126/science.1186120
    [36]
    KELLEY C J, KELLER C K, EVANS R D, et al. Nitrate nitrogen and oxygen isotope ratios for identification of nitrate sources and dominant nitrogen cycle processes in a tile-drained dryland agricultural field[J]. Soil Biol Biochem,2013,57:731 − 738. DOI: 10.1016/j.soilbio.2012.10.017
    [37]
    LUTZ S R, TRAUTH N, MUSOLFF A, et al. How important is denitrification in riparian zones? combining end-member mixing and isotope modeling to quantify nitrate removal from riparian groundwater[J]. Water Resour Res,2020,56:e2019WR025528.
    [38]
    RÜTTING T, BOECKX P, MULLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences,2011,8:1779 − 1791. DOI: 10.5194/bg-8-1779-2011
    [39]
    KRAFT B, TEGETMEYER H E, SHARMA R, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science,2014,345:676 − 679. DOI: 10.1126/science.1254070
    [40]
    ZHU G B, WANG S Y, WANG W D, et al. Hotspots of anaerobic ammonium oxidation at land–freshwater interfaces[J]. Nat Geosci,2013,6:103 − 107. DOI: 10.1038/ngeo1683
    [41]
    YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nat Geosci,2012,5:538 − 541. DOI: 10.1038/ngeo1530
    [42]
    NIKOLENKO O, JURADO A, BORGES A V, et al. Isotopic composition of nitrogen species in groundwater under agricultural areas: A review[J]. Sci Total Environ,2018,621:1415 − 1432. DOI: 10.1016/j.scitotenv.2017.10.086
    [43]
    BÖHLKE J K, SMITH R L, MILLER D N. Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies[J]. Water Resour Res,2006,42:W05411.
    [44]
    SMITH R L, BÖHLKE J K, SONG B, et al. , 2015. Role of anaerobic ammonium oxidation (Anammox) in nitrogen removal from a freshwater aquifer[J]. Environ Sci Technol,2015,49:12169 − 12177. DOI: 10.1021/acs.est.5b02488
    [45]
    DING L J, AN X L, LI S, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environ Sci Technol,2014,48:10641 − 10647. DOI: 10.1021/es503113s
    [46]
    HARDISON A K, ALGAR C K, GIBLIN A E, et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production[J]. Geochim Cosmochim Acta,2015,164:146 − 160. DOI: 10.1016/j.gca.2015.04.049
    [47]
    BURGIN A J, HAMILTON S K. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways[J]. Front Ecol Environ,2007,5(2):89 − 96. DOI: 10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
    [48]
    DING B J, LI Z K, QIN Y B. Nitrogen loss from anaerobic ammonium oxidation coupled to iron(III) reduction in a riparian zone[J]. Environ Pollut,2017,231:379 − 386. DOI: 10.1016/j.envpol.2017.08.027
    [49]
    PLUMMER P, TOBIAS C, CADY D. Nitrogen reduction pathways in estuarine sediments: Influences of organic carbon and sulfide[J]. J Geophys Res Biogeosci,2015,120:1958 − 1972.
    [50]
    WANG SY, ZHU GB, ZHUANG LJ, et al. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world[J]. ISME J,2020,14:151 − 163. DOI: 10.1038/s41396-019-0513-x
    [51]
    LI X, HOU L, LIU M, et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environ Sci Technol,2015,49:11560 − 11568. DOI: 10.1021/acs.est.5b03419
    [52]
    TOMASZEWSKI M, CEMA G, ZIEMBINSKA-BUCZYNSKA A. Influence of temperature and pH on the Anammox process: A review and meta-analysis[J]. Chemosphere,2017,182:203 − 214. DOI: 10.1016/j.chemosphere.2017.05.003
    [53]
    ROBERTSON E K, ROBERTS K L, BURDORF L D W, et al. Dissimilatory nitrate reduction to ammonium coupled to Fe(II) oxidation in sediments of a periodically hypoxic estuary[J]. Limnol Oceanogr,2016,61:365 − 381. DOI: 10.1002/lno.10220
    [54]
    CLÉMENT J C, SHRESTHA J, EHRENFELD J G, et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biol, Biochem,2005,37:2323 − 2328. DOI: 10.1016/j.soilbio.2005.03.027
    [55]
    SALK K R, ERLER D V, EYRE B D, et al. Unexpectedly high degree of Anammox and DNRA in seagrass sediments: Description and application of a revised isotope pairing technique[J]. Geochim Cosmochim Acta,2017,211:64 − 78. DOI: 10.1016/j.gca.2017.05.012
    [56]
    ROBERTSON E K, THAMDRUP B. The fate of nitrogen is linked to iron(II) availability in a freshwater lake sediment[J]. Geochim, Cosmochim Acta,2017,205:84 − 99. DOI: 10.1016/j.gca.2017.02.014
    [57]
    HORNEK R, POMMERENING- RÖSER A, KOOPS H-P, et al. Primers containing universal bases reduce multiple amoA gene specific DGGE band patterns when analysing the diversity of beta-ammonia oxidizers in the environment[J]. J Microbiol Meth,2006,66(1):147 − 155. DOI: 10.1016/j.mimet.2005.11.001
    [58]
    KOWALCHUK G A, STEPHEN J R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology[J]. Annu Rev Microbiol,2001,55:485 − 529. DOI: 10.1146/annurev.micro.55.1.485
    [59]
    KÖNNEKE M, BERNHARD A E, DE LA TORRE J R, et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon[J]. Nature,2005,437:543 − 546. DOI: 10.1038/nature03911
    [60]
    CAFFREY J M, BANO N, KALANETRA K, et al. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia[J]. ISME J,2007,1(7):660 − 662. DOI: 10.1038/ismej.2007.79
    [61]
    MOSIER A C, FRANCIS C A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay Estuary[J]. Environ Microbiol,2008,10(11):3002 − 3016. DOI: 10.1111/j.1462-2920.2008.01764.x
    [62]
    SANTORO A E, FRANCIS C A, DE SIEYES N R, et al. Shifts in the relative abundance of ammonia-oxidizing bacteria and Archaea across physicochemical gradients in a subterranean estuary[J]. Environ Microbiol,2008,10(4):1068 − 1079. DOI: 10.1111/j.1462-2920.2007.01547.x
    [63]
    LIU T T, YANG H. Different nutrient levels, rather than seasonal changes, significantly affected the spatiotemporal dynamic changes of ammonia-oxidizing microorganisms in Lake Taihu[J]. World J Microbiol Biotechnol,2021,37(6):1 − 11.
    [64]
    KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nat Rev Microbiol,2018,16(5):263 − 276. DOI: 10.1038/nrmicro.2018.9
    [65]
    SOARES M. Biological denitrification of groundwater[J]. Water Air Soil Poll,2000,123(1):183 − 193.
    [66]
    DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chem Eng J,2019,362:922 − 937. DOI: 10.1016/j.cej.2019.01.069
    [67]
    SUN W J, SIERRA-ALVAREZ R, FERNANDEZ N, et al. Molecular characterization and in situ quantification of anoxic arsenite-oxidizing denitrifying enrichment cultures[J]. FEMS Microbiol Ecol,2009,68(1):72 − 85. DOI: 10.1111/j.1574-6941.2009.00653.x
    [68]
    MOORE T A, XING Y P, LAZENBY B, et al. Prevalence of anaerobic ammonium-oxidizing bacteria in contaminated groundwater[J]. Environ Sci Technol,2011,45(17):7217 − 7225. DOI: 10.1021/es201243t
    [69]
    XIU W, KE T T, LLOYD J R, et al. Understanding microbial arsenic-mobilization in multiple aquifers: Insight from DNA and RNA analyses[J]. Environ Sci Technol,2021,55(22):15181 − 15195. DOI: 10.1021/acs.est.1c04117
    [70]
    BRUNET R C, GARCIA-GIL L J. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J]. FEMS Microbiol Ecol,1996,21(2):131 − 138. DOI: 10.1111/j.1574-6941.1996.tb00340.x
    [71]
    SEITZ H J, CYPIONKA H. Chemolithotrophic growth of desulfovibrio-desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite[J]. Arch Microbiol,1986,146(1):63 − 67. DOI: 10.1007/BF00690160
    [72]
    HOOR A T T. Cell yield and bioenergetics of Thiomicrospira denitrificans compared with Thiobacillus denitrificans[J]. Anton Leeuw,1981,47(3):231 − 243. DOI: 10.1007/BF00403394
    [73]
    JØRGENSEN B B. Mineralization of organic-matter in the sea bed-the role of sulfate reduction[J]. Nature,1982,296:643 − 645. DOI: 10.1038/296643a0
    [74]
    KELLY D P, WOOD A P. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain[J]. Int J Syst Evol Microbiol,2000,50:547 − 550. DOI: 10.1099/00207713-50-2-547
    [75]
    HUANG S, CHEN C, PENG X, et al. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biol Biochem,2016,98:148 − 158. DOI: 10.1016/j.soilbio.2016.04.012
    [76]
    POSTMA D, LARSEN F, MINH HUE N T, et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling[J]. Geochim Cosmochim Acta,2007,71(21):5054 − 5071. DOI: 10.1016/j.gca.2007.08.020
    [77]
    FENDORF S, MICHAEL H A, VAN GEEN A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia[J]. Science,2010,328:1123 − 1127. DOI: 10.1126/science.1172974
    [78]
    GUO H M, ZHOU Y Z, JIA Y F, et al. Sulfur cycling-related biogeochemical processes of arsenic mobilization in the western Hetao Basin, China: Evidence from multiple isotope approaches[J]. Environ Sci Technol,2016,50(23):12650 − 12659. DOI: 10.1021/acs.est.6b03460
    [79]
    GLODOWSKA M, STOPELLI E, SCHNEIDER M, et al. Role of in situ natural organic matter in mobilizing As during microbial reduction of Fe(III)-mineral-bearing aquifer sediments from Hanoi (Vietnam)[J]. Environ Sci Technol,2020,54(7):4149 − 4159. DOI: 10.1021/acs.est.9b07183
    [80]
    QIAO W, GUO H M, HE C, et al. Molecular evidence of arsenic mobility linked to biodegradable organic matter[J]. Environ Sci Technol,2020,54(12):7280 − 7290. DOI: 10.1021/acs.est.0c00737
    [81]
    ZHANG D, GUO H M, NI P, et al. In-situ mobilization and transformation of iron oxides-adsorbed arsenate in natural groundwater[J]. J Hazard Mater,2017,321:228 − 237. DOI: 10.1016/j.jhazmat.2016.09.021
    [82]
    GLODOWSKA M, SCHNEIDER M, EICHE E, et al. Microbial transformation of biogenic and abiogenic Fe minerals followed by in-situ incubations in an As-contaminated vs. non-contaminated aquifer[J]. Environ Poll,2021,281:117012. DOI: 10.1016/j.envpol.2021.117012
    [83]
    GAO Z P, JIA Y F, GUO H M, et al. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model[J]. Water Resour Res,2020,56(2):e2019WR025492.
    [84]
    BISWAS A, GUSTAFSSON J P, NEIDHARDT H, et al. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling[J]. Water Res,2014,55:30 − 39. DOI: 10.1016/j.watres.2014.02.002
    [85]
    SCHITTICH A R, WÜNSCH U J, KULKARNI H V, et al. Investigating fluorescent organic-matter composition as a key predictor for arsenic mobility in groundwater aquifers[J]. Environ Sci Technol,2018,52(22):13027 − 13036. DOI: 10.1021/acs.est.8b04070
    [86]
    XIU W, LLOYD J, GUO H M, et al. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization[J]. Environ Int,2020,136:105489. DOI: 10.1016/j.envint.2020.105489
    [87]
    GAO Z P, WENG H C, GUO H M. Unraveling influences of nitrogen cycling on arsenic enrichment in groundwater from the Hetao Basin using geochemical and multi-isotopic approaches[J]. J Hydrol,2021,595:125981. DOI: 10.1016/j.jhydrol.2021.125981
    [88]
    李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试,2022,41(1):120 − 132. [LI Jincheng, CAO Wengeng, PAN Deng, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis,2022,41(1):120 − 132. (in Chinese with English abstract)
    [89]
    FANG J H, XIE Z M, WANG J, et al. Bacterially mediated release and mobilization of As/Fe coupled to nitrate reduction in a sediment environment[J]. Ecotoxicol Environ Saf,2021,208:111478. DOI: 10.1016/j.ecoenv.2020.111478
    [90]
    SUN J, CHILLRUD S N, MAILLOUX B J, et al. Enhanced and stabilized arsenic retention in microcosms through the microbial oxidation of ferrous iron by nitrate[J]. Chemosphere,2016,144:1106 − 1115. DOI: 10.1016/j.chemosphere.2015.09.045
    [91]
    SENN D B, HEMOND H F. Nitrate controls on iron and arsenic in an urban lake[J]. Science,2002,296:2373 − 2376. DOI: 10.1126/science.1072402
    [92]
    MCMAHON P B, CHAPELLE F H. Redox processes and water quality of selected principal aquifer systems[J]. Groundwater,2008,46(2):259 − 271. DOI: 10.1111/j.1745-6584.2007.00385.x
    [93]
    SCHAEFER M V, YING S C, BENNER S G, et al. Aquifer arsenic cycling induced by seasonal hydrologic changes within the Yangtze River Basin[J]. Environ Sci Technol,2016,50(7):3521 − 3529. DOI: 10.1021/acs.est.5b04986
    [94]
    DING B J, CHEN Z H, LI Z K, et al. Nitrogen loss through anaerobic ammonium oxidation coupled to Iron reduction from ecosystem habitats in the Taihu estuary region[J]. Sci Total Environ,2019,662:600 − 606. DOI: 10.1016/j.scitotenv.2019.01.231
    [95]
    POSTMA D, PHAM T K T, SØ H U, et al. A model for the evolution in water chemistry of an arsenic contaminated aquifer over the last 6000 years, Red River floodplain, Vietnam[J]. Geochim Cosmochim Acta,2016,195:277 − 292. DOI: 10.1016/j.gca.2016.09.014
    [96]
    POSTMA D, JESSEN S, HUE N T M, et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam[J]. Geochim Cosmochim Acta,2010,74(12):3367 − 3381. DOI: 10.1016/j.gca.2010.03.024
    [97]
    STAHL M O, HARVEY C F, VAN GEEN A, et al. River bank geomorphology controls groundwater arsenic concentrations in aquifers adjacent to the Red River, Hanoi Vietnam[J]. Water Resour Res,2016,52(8):6321 − 6334. DOI: 10.1002/2016WR018891
    [98]
    MICHIELS C C, DARCHAMBEAU F, ROLAND F A E, et al. Iron-dependent nitrogen cycling in a ferruginous lake and the nutrient status of Proterozoic oceans[J]. Nat Geosci,2017,10:217 − 221. DOI: 10.1038/ngeo2886

Catalog

    Article views (759) PDF downloads (266) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return