Citation: | LUO Yibin, CHEN Jibin, WANG Yuanyuan, et al. Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 64-73. DOI: 10.16030/j.cnki.issn.1000-3665.202203008 |
[1] |
于贵,李星,舒中文,等. 高层建筑地下室上浮变形特征及处置措施研究[J]. 地下空间与工程学报,2020,16(1):211 − 218. [YU Gui,LI Xing,SHU Zhongwen,et al. Research on floating deformation characteristics and treatment measures of high-rise building basement[J]. Chinese Journal of Underground Space and Engineering,2020,16(1):211 − 218. (in Chinese with English abstract)
|
[2] |
朱东风,曹洪,骆冠勇,等. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报,2018,40(9):1746 − 1752. [ZHU Dongfeng,CAO Hong,LUO Guanyong,et al. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1746 − 1752. (in Chinese with English abstract)
|
[3] |
王海东,罗雨佳. 超大地下室施工期抗浮破坏机理分析与应对思考[J]. 铁道科学与工程学报,2019,16(10):2538 − 2546. [WANG Haidong,LUO Yujia. Analysis of the mechanism of anti-floating damage and its countermeasures during construction period of oversized underground garage[J]. Journal of Railway Science and Engineering,2019,16(10):2538 − 2546. (in Chinese with English abstract) DOI: 10.19713/j.cnki.43-1423/u.2019.10.021
|
[4] |
崔虎群,李文鹏,康卫东,等. 黑河中游不同灌溉方式下地下水入渗补给特征研究[J]. 水文地质工程地质,2022,49(3):22 − 28. [CUI Huqun,LI Wenpeng,KANG Weidong,et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology,2022,49(3):22 − 28. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202111019
|
[5] |
张晨晨,黄翀,何云,等. 黄河三角洲浅层地下水埋深动态与降水的时空响应关系[J]. 水文地质工程地质,2020,47(5):21 − 30. [ZHANG Chenchen,HUANG Chong,HE Yun,et al. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta[J]. Hydrogeology & Engineering Geology,2020,47(5):21 − 30. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202002033
|
[6] |
中华人民共和国住房和城乡建设部. 建筑工程抗浮技术标准: JGJ 476—2019[S]. 北京: 中国建筑工业出版社, 2019
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for building engineering against uplift: JGJ 476—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
|
[7] |
黄俊光,李健斌,秦泳生. 超深地下工程抗浮技术的探索[J]. 建筑结构,2020,50(10):129 − 134. [HUANG Junguang,LI Jianbin,QIN Yongsheng. Exploration of anti-floating technology for super-deep underground structures[J]. Building Structure,2020,50(10):129 − 134. (in Chinese with English abstract) DOI: 10.19701/j.jzjg.2020.10.018
|
[8] |
XIAO Y P,CAO H,LUO G Y,et al. Modelling seepage flow near the pipe tip[J]. Acta Geotechnica,2020,15(7):1953 − 1966. DOI: 10.1007/s11440-019-00878-8
|
[9] |
骆冠勇,马铭骏,曹洪,等. 临江地下结构主被动联合抗浮方法及应用[J]. 岩土力学,2020,41(11):3730 − 3739. [LUO Guanyong,MA Mingjun,CAO Hong,et al. A new anti-float method for riverside underground structures:drainage corridor combined with uplift piles or uplift anchors[J]. Rock and Soil Mechanics,2020,41(11):3730 − 3739. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2020.0608
|
[10] |
朱东风. 地下结构截排减压抗浮法渗控关键问题研究[D]. 广州: 华南理工大学, 2019
ZHU Dongfeng. A study on seepage control issues of anti-uplift method for underground structures based on intercepting and discharging water[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
|
[11] |
NI P P, KANG X, SONG L H, et al. Model tests of buoyant force on underground structures[J]. Journal of Testing and Evaluation, 2019, 47(2). DOI: 10.1520/JTE20170017.
|
[12] |
陆启贤. 土中孔压传递规律及水浮力折减机理研究[D]. 南宁: 广西大学, 2019
LU Qixian. Study on pore pressure transfer rule and water buoyancy reduction mechanism[D]. Nanning: Guangxi University, 2019. (in Chinese with English abstract)
|
[13] |
木林隆, 王乐, 李杰, 等. 地下结构对地下水渗流场水位改变的数值分析[J]. 土木工程学报, 2019, 52(增刊1): 78 − 84
MU Linlong, WANG Le, LI Jie, et al. Numerical analysis of influence of the underground structure on seepage[J]. China Civil Engineering Journal, 2019, 52(Sup 1): 78 − 84. (in Chinese with English abstract)
|
[14] |
王新,康景文. 成都地区卵石层抗浮锚杆的设计方法探讨[J]. 四川建筑科学研究,2012,38(6):131 − 134. [WANG Xin,KANG Jingwen. Discussion on design method for anti-float anchor at pebble soil in Chengdu[J]. Sichuan Building Science,2012,38(6):131 − 134. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-1933.2012.06.035
|
[15] |
ZHU H H,MEI G X,XU M,et al. Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor[J]. Geomechanics and Engineering,2014,7(2):165 − 181. DOI: 10.12989/gae.2014.7.2.165
|
[16] |
ZHANG C C,ZHU H H,XU Q,et al. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand[J]. Canadian Geotechnical Journal,2015,52(6):671 − 681. DOI: 10.1139/cgj-2013-0381
|
[17] |
梅国雄, 宋林辉. 地下结构抗浮理论与技术应用[M]. 北京: 科学出版社, 2019
MEI Guoxiong, SONG Linhui. Anti floating theory and technical application of underground structures[M]. Beijing: Science Press, 2019. (in Chinese)
|
[18] |
孙书伟, 林杭, 任连伟. FLAC3D在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2011
SUN Shuwei, LIN Hang, REN Lianwei. Application of FLAC3D in geotechnical engineering[M]. Beijing: China Water Power Press, 2011. (in Chinese)
|
[19] |
中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
|
[20] |
中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
|
1. |
周志尧,程银银,张喆,王紫,兰永军,李宏波. 固废材料复合固化盐渍土的力学性能. 中国粉体技术. 2025(01): 130-142 .
![]() | |
2. |
李丽华,刘文,白玉霞,王翠英,李双琴. 椰壳纤维-石灰协同作用改良黏土性能试验研究. 水文地质工程地质. 2025(01): 130-140 .
![]() | |
3. |
刘鑫,许伟能,黄光靖,兰恒星. 考虑分布效应的纤维加筋黄土室内大型直剪试验研究. 长江科学院院报. 2025(01): 144-151 .
![]() | |
4. |
魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
![]() | |
5. |
韩长玉,赵浩汀. 路基填筑短期内热棒高导热性影响. 吉林大学学报(地球科学版). 2024(02): 570-580 .
![]() | |
6. |
李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 .
![]() | |
7. |
季鹏. 聚丙烯纤维增强淤泥固化土的力学性能研究. 四川建材. 2024(08): 95-97 .
![]() | |
8. |
宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 .
![]() | |
9. |
王润泽,孙静,季雨航,刘宇轩. 冻融循环作用下二灰盐渍土无侧限抗压强度研究. 黑龙江大学工程学报(中英俄文). 2024(03): 78-87 .
![]() | |
10. |
刘冉,张保良,李大鹏,邢国起. 含盐量、冻融和固化作用对盐碱地区盐渍土强度的影响研究综述. 江西建材. 2024(09): 6-10 .
![]() | |
11. |
於德美,陈书杰,张峰,冯超,张恒春,王耀,付腾飞,黄霞. 纤维加筋固化土研究现状及展望. 材料导报. 2024(S2): 139-146 .
![]() | |
12. |
徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 .
![]() | |
13. |
王晗. 不同物理作用下河道堤防黏土力学特性及边坡稳定性研究. 水利建设与管理. 2023(05): 36-41+47 .
![]() | |
14. |
申涛. 高速铁路盐渍土路基填料复掺改良试验研究. 路基工程. 2023(04): 32-36 .
![]() | |
15. |
孙桂玉,胡任宇,田野,林昭阳. 聚丙烯纤维增强流态固化土的力学性能研究. 四川建材. 2023(11): 85-87 .
![]() | |
16. |
张合勇,王雪冬,朱永东,王海鹏,漆利辉. 冻融循环作用下露天煤矿内排土场土体力学特征及强度劣化机理. 煤田地质与勘探. 2023(11): 119-131 .
![]() |