ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
LUO Yibin, CHEN Jibin, WANG Yuanyuan, et al. Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 64-73. DOI: 10.16030/j.cnki.issn.1000-3665.202203008
Citation: LUO Yibin, CHEN Jibin, WANG Yuanyuan, et al. Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 64-73. DOI: 10.16030/j.cnki.issn.1000-3665.202203008

Anti-floating failure mechanism of underground structures in expansive soil area and application of active anti-floating measures

More Information
  • Received Date: March 02, 2022
  • Revised Date: June 14, 2022
  • Available Online: November 06, 2022
  • Published Date: November 14, 2022
  • Expansive soil is a weakly permeable stratum with low permeability. It is generally regarded as a relative aquiclude or water resisting layer. Its anti-floating water level is needed to comprehensively consider the site seepage characteristics, fertilizer tank filler characteristics and water-structure interaction, which makes the anti-floating problem very prominent and difficult to deal with. Based on a building failure treatment case in the expansive soil area of Chengdu, through the investigation of the water leakage source of the basement, the monitoring of groundwater flow and the evaluation of the discharge capacity of the drainage system, it is considered that the basement floating is caused by the improper construction control of the fertilizer tank, which makes the high-pressure water penetrate into the bottom of the water resistant plate, resulting in the imbalance of hydraulic conditions. Combined with the FLAC3D finite difference method, the mechanical behavior characteristics of underground structures under the action of groundwater buoyancy and expansive force are discussed in detail. Combined with the engineering practice, an anti-floating method based on "pressure relief" is proposed. The idea is to open a pressure relief hole in the bottom plate to make the groundwater flow and convert the hydrostatic pressure into kinetic energy without changing the groundwater level, and supplement observation and automatic control measures is carried out to achieve the purpose of anti-floating. The monitoring results of the project show that the flow and head are controllable and the operation cost is low.
  • [1]
    于贵,李星,舒中文,等. 高层建筑地下室上浮变形特征及处置措施研究[J]. 地下空间与工程学报,2020,16(1):211 − 218. [YU Gui,LI Xing,SHU Zhongwen,et al. Research on floating deformation characteristics and treatment measures of high-rise building basement[J]. Chinese Journal of Underground Space and Engineering,2020,16(1):211 − 218. (in Chinese with English abstract)
    [2]
    朱东风,曹洪,骆冠勇,等. 截排减压抗浮系统在抗浮事故处理中的应用[J]. 岩土工程学报,2018,40(9):1746 − 1752. [ZHU Dongfeng,CAO Hong,LUO Guanyong,et al. Application of interception and drainage anti-floating system in treatment of uplift accidents[J]. Chinese Journal of Geotechnical Engineering,2018,40(9):1746 − 1752. (in Chinese with English abstract)
    [3]
    王海东,罗雨佳. 超大地下室施工期抗浮破坏机理分析与应对思考[J]. 铁道科学与工程学报,2019,16(10):2538 − 2546. [WANG Haidong,LUO Yujia. Analysis of the mechanism of anti-floating damage and its countermeasures during construction period of oversized underground garage[J]. Journal of Railway Science and Engineering,2019,16(10):2538 − 2546. (in Chinese with English abstract) DOI: 10.19713/j.cnki.43-1423/u.2019.10.021
    [4]
    崔虎群,李文鹏,康卫东,等. 黑河中游不同灌溉方式下地下水入渗补给特征研究[J]. 水文地质工程地质,2022,49(3):22 − 28. [CUI Huqun,LI Wenpeng,KANG Weidong,et al. A study of groundwater recharge under different irrigation conditions in the middle reaches of the Heihe River[J]. Hydrogeology & Engineering Geology,2022,49(3):22 − 28. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202111019
    [5]
    张晨晨,黄翀,何云,等. 黄河三角洲浅层地下水埋深动态与降水的时空响应关系[J]. 水文地质工程地质,2020,47(5):21 − 30. [ZHANG Chenchen,HUANG Chong,HE Yun,et al. An analysis of the space-time patterns of precipitation-shallow groundwater depth interactions in the Yellow River Delta[J]. Hydrogeology & Engineering Geology,2020,47(5):21 − 30. (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202002033
    [6]
    中华人民共和国住房和城乡建设部. 建筑工程抗浮技术标准: JGJ 476—2019[S]. 北京: 中国建筑工业出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical standard for building engineering against uplift: JGJ 476—2019[S]. Beijing: China Architecture & Building Press, 2019. (in Chinese)
    [7]
    黄俊光,李健斌,秦泳生. 超深地下工程抗浮技术的探索[J]. 建筑结构,2020,50(10):129 − 134. [HUANG Junguang,LI Jianbin,QIN Yongsheng. Exploration of anti-floating technology for super-deep underground structures[J]. Building Structure,2020,50(10):129 − 134. (in Chinese with English abstract) DOI: 10.19701/j.jzjg.2020.10.018
    [8]
    XIAO Y P,CAO H,LUO G Y,et al. Modelling seepage flow near the pipe tip[J]. Acta Geotechnica,2020,15(7):1953 − 1966. DOI: 10.1007/s11440-019-00878-8
    [9]
    骆冠勇,马铭骏,曹洪,等. 临江地下结构主被动联合抗浮方法及应用[J]. 岩土力学,2020,41(11):3730 − 3739. [LUO Guanyong,MA Mingjun,CAO Hong,et al. A new anti-float method for riverside underground structures:drainage corridor combined with uplift piles or uplift anchors[J]. Rock and Soil Mechanics,2020,41(11):3730 − 3739. (in Chinese with English abstract) DOI: 10.16285/j.rsm.2020.0608
    [10]
    朱东风. 地下结构截排减压抗浮法渗控关键问题研究[D]. 广州: 华南理工大学, 2019

    ZHU Dongfeng. A study on seepage control issues of anti-uplift method for underground structures based on intercepting and discharging water[D]. Guangzhou: South China University of Technology, 2019. (in Chinese with English abstract)
    [11]
    NI P P, KANG X, SONG L H, et al. Model tests of buoyant force on underground structures[J]. Journal of Testing and Evaluation, 2019, 47(2). DOI: 10.1520/JTE20170017.
    [12]
    陆启贤. 土中孔压传递规律及水浮力折减机理研究[D]. 南宁: 广西大学, 2019

    LU Qixian. Study on pore pressure transfer rule and water buoyancy reduction mechanism[D]. Nanning: Guangxi University, 2019. (in Chinese with English abstract)
    [13]
    木林隆, 王乐, 李杰, 等. 地下结构对地下水渗流场水位改变的数值分析[J]. 土木工程学报, 2019, 52(增刊1): 78 − 84

    MU Linlong, WANG Le, LI Jie, et al. Numerical analysis of influence of the underground structure on seepage[J]. China Civil Engineering Journal, 2019, 52(Sup 1): 78 − 84. (in Chinese with English abstract)
    [14]
    王新,康景文. 成都地区卵石层抗浮锚杆的设计方法探讨[J]. 四川建筑科学研究,2012,38(6):131 − 134. [WANG Xin,KANG Jingwen. Discussion on design method for anti-float anchor at pebble soil in Chengdu[J]. Sichuan Building Science,2012,38(6):131 − 134. (in Chinese with English abstract) DOI: 10.3969/j.issn.1008-1933.2012.06.035
    [15]
    ZHU H H,MEI G X,XU M,et al. Experimental and numerical investigation of uplift behavior of umbrella-shaped ground anchor[J]. Geomechanics and Engineering,2014,7(2):165 − 181. DOI: 10.12989/gae.2014.7.2.165
    [16]
    ZHANG C C,ZHU H H,XU Q,et al. Time-dependent pullout behavior of glass fiber reinforced polymer (GFRP) soil nail in sand[J]. Canadian Geotechnical Journal,2015,52(6):671 − 681. DOI: 10.1139/cgj-2013-0381
    [17]
    梅国雄, 宋林辉. 地下结构抗浮理论与技术应用[M]. 北京: 科学出版社, 2019

    MEI Guoxiong, SONG Linhui. Anti floating theory and technical application of underground structures[M]. Beijing: Science Press, 2019. (in Chinese)
    [18]
    孙书伟, 林杭, 任连伟. FLAC3D在岩土工程中的应用[M]. 北京: 中国水利水电出版社, 2011

    SUN Shuwei, LIN Hang, REN Lianwei. Application of FLAC3D in geotechnical engineering[M]. Beijing: China Water Power Press, 2011. (in Chinese)
    [19]
    中华人民共和国住房和城乡建设部. 膨胀土地区建筑技术规范: GB 50112—2013[S]. 北京: 中国建筑工业出版社, 2013

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for building in expansive soil regions: GB 50112—2013[S]. Beijing: China Architecture & Building Press, 2013. (in Chinese)
    [20]
    中华人民共和国住房和城乡建设部. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for retaining and protection of building foundation excavations: JGJ 120—2012[S]. Beijing: China Architecture & Building Press, 2012. (in Chinese)
  • Cited by

    Periodical cited type(16)

    1. 周志尧,程银银,张喆,王紫,兰永军,李宏波. 固废材料复合固化盐渍土的力学性能. 中国粉体技术. 2025(01): 130-142 .
    2. 李丽华,刘文,白玉霞,王翠英,李双琴. 椰壳纤维-石灰协同作用改良黏土性能试验研究. 水文地质工程地质. 2025(01): 130-140 . 本站查看
    3. 刘鑫,许伟能,黄光靖,兰恒星. 考虑分布效应的纤维加筋黄土室内大型直剪试验研究. 长江科学院院报. 2025(01): 144-151 .
    4. 魏丽,杨光,尚军,柴寿喜. 冻融损伤过程中纤维加筋土的抗压性能与裂隙演化. 土木工程学报. 2024(04): 81-91 .
    5. 韩长玉,赵浩汀. 路基填筑短期内热棒高导热性影响. 吉林大学学报(地球科学版). 2024(02): 570-580 .
    6. 李治斌,刘利骄,黄帅,丁琳,柳艳杰. 冻结二灰固化碳酸盐渍土及损伤模型研究. 长江科学院院报. 2024(07): 118-125 .
    7. 季鹏. 聚丙烯纤维增强淤泥固化土的力学性能研究. 四川建材. 2024(08): 95-97 .
    8. 宾伟,黄靓,曾令宏,刘文琦,屈辉,彭龙辉,李东. 水泥固化再生骨料改性盐渍土的路用性能研究. 公路. 2024(08): 94-100 .
    9. 王润泽,孙静,季雨航,刘宇轩. 冻融循环作用下二灰盐渍土无侧限抗压强度研究. 黑龙江大学工程学报(中英俄文). 2024(03): 78-87 .
    10. 刘冉,张保良,李大鹏,邢国起. 含盐量、冻融和固化作用对盐碱地区盐渍土强度的影响研究综述. 江西建材. 2024(09): 6-10 .
    11. 於德美,陈书杰,张峰,冯超,张恒春,王耀,付腾飞,黄霞. 纤维加筋固化土研究现状及展望. 材料导报. 2024(S2): 139-146 .
    12. 徐亚利,吴先锋. 纤维加筋土力学性能与耐久性能研究进展. 长春工程学院学报(自然科学版). 2024(04): 16-21 .
    13. 王晗. 不同物理作用下河道堤防黏土力学特性及边坡稳定性研究. 水利建设与管理. 2023(05): 36-41+47 .
    14. 申涛. 高速铁路盐渍土路基填料复掺改良试验研究. 路基工程. 2023(04): 32-36 .
    15. 孙桂玉,胡任宇,田野,林昭阳. 聚丙烯纤维增强流态固化土的力学性能研究. 四川建材. 2023(11): 85-87 .
    16. 张合勇,王雪冬,朱永东,王海鹏,漆利辉. 冻融循环作用下露天煤矿内排土场土体力学特征及强度劣化机理. 煤田地质与勘探. 2023(11): 119-131 .

    Other cited types(13)

Catalog

    Article views (235) PDF downloads (98) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return