ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
WANG Qiangmin, ZHAO Ming, PENG Hongjie, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076
Citation: WANG Qiangmin, ZHAO Ming, PENG Hongjie, et al. Water transport process and simulation of layered soils with different configurations in an arid region[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 84-94. DOI: 10.16030/j.cnki.issn.1000-3665.202211076

Water transport process and simulation of layered soils with different configurations in an arid region

More Information
  • Received Date: November 27, 2022
  • Revised Date: January 05, 2023
  • Available Online: June 05, 2023
  • The mining area in northwest China is located in the arid and semi-arid zone, in which the surface water resource is sparse and the ecological environment is fragile. Coupled with the exploitation of mineral resources, the land has been degraded seriously. How to realize the efficient reclamation of soil and the effective utilization of soil water is an urgent scientific and technical problem. In this study, the layered soil with different configurations is set up for water transport and infiltration test to monitor the moisture changes in the soil profile. Hydrus-1D is used to simulate the rainfall infiltration process and reveal the water transport characteristics of layered soil from three aspects: soil moisture, water potential and water flux. The scenario simulation is conducted based on the optimized model to explore the effect of interlayer characteristics on shallow soil water. The results show that the interlayer significantly changes the distribution and transport of soil water, and the soil water potential is continuously distributed at the interlayer interface, while the soil water abruptly changes at the interlayer interface. Although loess interlayer and weathered sandstone interlayer both block the infiltration of soil water, the principle and the source of water increase are different. The former is the retention of soil water above the interlayer due to

    the poor permeability of loess, while the latter is the retention of water above the interlayer due to the small matrix potential of the coarser interlayer. According to the results of the model, it is suggested that setting loess interlayer of 20 cm thick at the depth of 40 cm of aeolian sand is conducive to increase soil moisture above the interlayer for vegetation utilization. Summarily, the results can provide a theoretical basis for understanding and mastering the layered soil hydrological process in arid regions and optimizing the soil reconstruction mode in the process of land reclamation and ecological restoration.

  • [1]
    王文科,宫程程,张在勇,等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke,GONG Chengcheng,ZHANG Zaiyong,et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract)

    WANG Wenke, GONG Chengcheng, ZHANG Zaiyong, et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 2018, 33(7): 702-718. (in Chinese with English abstract)
    [2]
    ZHAO Ming,WANG Wenke,WANG Zhoufeng,et al. Water use of Salix in the variably unsaturated zone of a semiarid desert region based on in-situ observation[J]. Journal of Hydrology,2020,591:125579. DOI: 10.1016/j.jhydrol.2020.125579
    [3]
    胡振琪,多玲花,王晓彤. 采煤沉陷地夹层式充填复垦原理与方法[J]. 煤炭学报,2018,43(1):198 − 206. [HU Zhenqi,DUO Linghua,WANG Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materals[J]. Journal of China Coal Society,2018,43(1):198 − 206. (in Chinese with English abstract)

    HU Zhenqi, DUO Linghua, WANG Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materals[J]. Journal of China Coal Society, 2018, 43(1): 198-206. (in Chinese with English abstract)
    [4]
    王强民,董书宁,王皓,等. 西部风沙区采煤塌陷地裂缝影响下的土壤水分运移规律及调控方法[J]. 煤炭学报,2021,46(5):1532 − 1540. [WANG Qiangmin,DONG Shuning,WANG Hao,et al. Influence of mining subsidence on soil water movement law and its regulation in blown-sand area of Western China[J]. Journal of China Coal Society,2021,46(5):1532 − 1540. (in Chinese with English abstract)

    WANG Qiangmin, DONG Shuning, WANG Hao, et al. Influence of mining subsidence on soil water movement law and its regulation in blown-sand area of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1532-1540. (in Chinese with English abstract)
    [5]
    胡振琪,魏忠义,秦萍. 矿山复垦土壤重构的概念与方法[J]. 土壤,2005,37(1):8 − 12. [HU Zhenqi,WEI Zhongyi,QIN Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils,2005,37(1):8 − 12. (in Chinese with English abstract)

    HU Zhenqi, WEI Zhongyi, QIN Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils, 2005, 37(1): 8-12. (in Chinese with English abstract)
    [6]
    郑礼全,胡振琪,赵艳玲,等. 采煤沉陷地土地复垦中土壤重构数学模型的研究[J]. 中国煤炭,2008,34(4):54 − 56. [ZHENG Liquan,HU Zhenqi,ZHAO Yanling,et al. A study on the soil restructure mathematical model for land reclamation in coal mining caused subsidence areas[J]. China Coal,2008,34(4):54 − 56. (in Chinese with English abstract)

    ZHENG Liquan, HU Zhenqi, ZHAO Yanling, et al. A study on the soil restructure mathematical model for land reclamation in coal mining caused subsidence areas[J]. China Coal, 2008, 34(4): 54-56. (in Chinese with English abstract)
    [7]
    王春颖,毛晓敏,赵兵. 层状夹砂土柱室内积水入渗试验及模拟[J]. 农业工程学报,2010,26(11):61 − 67. [WANG Chunying,MAO Xiaomin,ZHAO Bing. Experiments and simulation on infiltration into layered soil column with sand interlayer under ponding condition[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(11):61 − 67. (in Chinese with English abstract)

    WANG Chunying, MAO Xiaomin, ZHAO Bing. Experiments and simulation on infiltration into layered soil column with sand interlayer under ponding condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(11): 61-67. (in Chinese with English abstract)
    [8]
    ROOIJ G D. Methods of soil analysis part 4 physical methods[J]. Vadose Zone Journal,2004,3:722 − 723.
    [9]
    SI Bing,DYCK M,PARKIN G. Flow and transport in layered soils[J]. Canadian Journal of Soil Science,2011,91(2):127 − 132. DOI: 10.4141/cjss11501
    [10]
    涂安国. 层状土壤水分入渗与溶质运移研究进展[J]. 江西农业大学学报,2017,39(4):818 − 825. [TU Anguo. Advances in water infiltration and solute transport in layered soil[J]. Acta Agriculturae Universitatis Jiangxiensis,2017,39(4):818 − 825. (in Chinese with English abstract)

    TU Anguo. Advances in water infiltration and solute transport in layered soil[J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(4): 818-825. (in Chinese with English abstract)
    [11]
    HANKS R J,BOWERS S A. Numerical solution of the moisture flow equation for infiltration into layered soils[J]. Soil Science Society of America Journal,1962,26(6):530 − 534. DOI: 10.2136/sssaj1962.03615995002600060007x
    [12]
    王文焰,张建丰,汪志荣,等. 砂层在黄土中的减渗作用及其计算[J]. 水利学报,2005,36(6):650 − 655. [WANG Wenyan,ZHANG Jianfeng,WANG Zhirong,et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering,2005,36(6):650 − 655. (in Chinese with English abstract) DOI: 10.3321/j.issn:0559-9350.2005.06.003

    WANG Wenyan, ZHANG Jianfeng, WANG Zhirong, et al. Infiltration reduction effect of sand layer in loess[J]. Journal of Hydraulic Engineering, 2005, 36(6): 650-655. (in Chinese with English abstract) DOI: 10.3321/j.issn:0559-9350.2005.06.003
    [13]
    陈秋计,吴锦忠,侯恩科,等. 采煤塌陷裂缝区重构土壤水分特性研究[J]. 煤炭技术,2015,34(11):308 − 310. [CHEN Qiuji,WU Jinzhong,HOU Enke,et al. Reseach on moisture characteristic of reconstruction soil in area of coal mining subsidence crack[J]. Coal Technology,2015,34(11):308 − 310. (in Chinese with English abstract)

    CHEN Qiuji, WU Jinzhong, HOU Enke, et al. Reseach on moisture characteristic of reconstruction soil in area of coal mining subsidence crack[J]. Coal Technology, 2015, 34(11): 308-310. (in Chinese with English abstract)
    [14]
    荣颖,王淳,孙光林,等. 不同重构土壤材料配比的土壤改良和苜蓿生长效应研究[J]. 金属矿山,2022(6):197 − 204. [RONG Ying,WANG Chun,SUN Guanglin,et al. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth[J]. Metal Mine,2022(6):197 − 204. (in Chinese with English abstract)

    RONG Ying, WANG Chun, SUN Guanglin, et al. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth[J]. Metal Mine, 2022(6): 197-204. (in Chinese with English abstract)
    [15]
    ZETTL J,LEE BARBOUR S,HUANG Mingbin,et al. Influence of textural layering on field capacity of coarse soils[J]. Canadian Journal of Soil Science,2011,91(2):133 − 147. DOI: 10.4141/cjss09117
    [16]
    吴奇凡,樊军,杨晓莉,等. 晋陕蒙接壤区露天矿层状土壤水分入渗特征与模拟[J]. 土壤学报,2015,52(6):1280 − 1290. [WU Qifan,FAN Jun,YANG Xiaoli,et al. Experiment and simulation of infiltration from layered soils in open pit mine in Jin-shaan-Meng adjacent region[J]. Acta Pedologica Sinica,2015,52(6):1280 − 1290. (in Chinese with English abstract)

    WU Qifan, FAN Jun, YANG Xiaoli, et al. Experiment and simulation of infiltration from layered soils in open pit mine in Jin-shaan-Meng adjacent region[J]. Acta Pedologica Sinica, 2015, 52(6): 1280-1290. (in Chinese with English abstract)
    [17]
    LI Ning,JIANG Haohong,LI Xinzhen. Behaviour of capillary barrier covers subjected to rainfall with different patterns[J]. Water,2020,12(11):3133. DOI: 10.3390/w12113133
    [18]
    KIM B S. Evaluation of the water shielding performance of a capillary barrier system through a small-scale model test[J]. Applied Sciences,2021,11(11):5231. DOI: 10.3390/app11115231
    [19]
    SHENG Huatan,SHI Weiwong,DU Jiachin,et al. Soil column infiltration tests on biomediated capillary barrier systems for mitigating rainfall-induced landslides[J]. Environmental Earth Sciences,2018,77(16):1 − 13.
    [20]
    ZHAN Liangtong,LI Guangyao,JIAO Weiguo,et al. Performance of a compacted loess/gravel cover as a capillary barrier and landfill gas emissions controller in Northwest China[J]. Science of the Total Environment,2020,718:137195. DOI: 10.1016/j.scitotenv.2020.137195
    [21]
    王文焰,王全九,沈冰,等. 甘肃秦王川地区双层土壤结构的入渗特性[J]. 土壤侵蚀与水土保持学报,1998,12(2):36 − 40. [WANG Wenyan,WANG Quanjiu,SHEN Bing,et al. Infiltration characteristics of soil with double layer structure in Qinwangchuan area of Gansu Province[J]. Journal of Soil Water Conservation,1998,12(2):36 − 40. (in Chinese with English abstract)

    WANG Wenyan, WANG Quanjiu, SHEN Bing, et al. Infiltration characteristics of soil with double layer structure in Qinwangchuan area of Gansu Province[J]. Journal of Soil Water Conservation, 1998, 12(2): 36-40. (in Chinese with English abstract)
    [22]
    李毅,任鑫,HORTON R. 不同质地和夹层位置对层状土入渗规律的影响[J]. 排灌机械工程学报,2012,30(4):485 − 490. [LI Yi,REN Xin,HORTON R. Influence of various soil textures and layer positions on infiltration characteristics of layered soils[J]. Journal of Drainage and Irrigation Machinery Engineering,2012,30(4):485 − 490. (in Chinese with English abstract)

    LI Yi, REN Xin, Horton Robert. Influence of various soil textures and layer positions on infiltration characteristics of layered soils[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(4): 485-490. (in Chinese with English abstract)
    [23]
    王晓彤,胡振琪,梁宇生. 基于Hydrus-1D的黄河泥沙充填复垦土壤夹层结构优化[J]. 农业工程学报,2022,38(2):76 − 86. [WANG Xiaotong,HU Zhenqi,LIANG Yusheng. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(2):76 − 86. (in Chinese with English abstract)

    WANG Xiaotong, HU Zhenqi, LIANG Yusheng. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 76-86. (in Chinese with English abstract)
    [24]
    马蒙蒙,林青,徐绍辉. 不同因素影响下层状土壤水分入渗特征及水力学参数估计[J]. 土壤学报,2020,57(2):347 − 358. [MA Mengmeng,LIN Qing,XU Shaohui. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica,2020,57(2):347 − 358. (in Chinese with English abstract)

    MA Mengmeng, LIN Qing, XU Shaohui. Water infiltration characteristics of layered soil under influences of different factors and estimation of hydraulic parameters[J]. Acta Pedologica Sinica, 2020, 57(2): 347-358. (in Chinese with English abstract)
    [25]
    侯光才, 张茂省, 刘方. 北京: 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008

    HOU Guangcai, ZHANG Maosheng, LIU Fang. Research on groundwater exploration in Ordos Basin [M]. Beijing: Geological Publishing House, 2008. (in Chinese)
    [26]
    李婉歆,尹红美,王文科,等. 基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异[J]. 水文地质工程地质,2021,48(3):38 − 44. [LI Wanxin,YIN Hongmei,WANG Wenke,et al. Evaporation between saturated bare soil and water:An analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology,2021,48(3):38 − 44. (in Chinese with English abstract)

    LI Wanxin, YIN Hongmei, WANG Wenke, et al. Evaporation between saturated bare soil and water: An analysis based on field observations and energy balance consideration[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 38-44. (in Chinese with English abstract)
    [27]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892 − 898. DOI: 10.2136/sssaj1980.03615995004400050002x
    [28]
    ŠIMŮNEK J M, ŠEJNA AND M, TH VAN GENUCHTEN. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[C]// International Ground Water Modeling Center, Colorado School of Mines. Golden, Colorado, 1998: 162.
    [29]
    HOPMANS J W, J ŠIMŮNEK, N ROMANO, et al. Inverse modeling of transient water flow[M]//Methods of Soil Analysis. 3rd ed. Madison: SSSA, WI, 2002: 963-1008.
    [30]
    崔浩浩,张光辉,张亚哲,等. 层状非均质包气带渗透性特征及其对降水入渗的影响[J]. 干旱地区农业研究,2020,38(3):1 − 9. [CUI Haohao,ZHANG Guanghui,ZHANG Yazhe,et al. Permeability characteristics of layered-heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas,2020,38(3):1 − 9. (in Chinese with English abstract)

    CUI Haohao, ZHANG Guanghui, ZHANG Yazhe, et al. Permeability characteristics of layered-heterogeneous vadose zone and influence on precipitation infiltration[J]. Agricultural Research in the Arid Areas, 2020, 38(3): 1-9. (in Chinese with English abstract)
    [31]
    崔浩浩,张光辉,刘鹏飞,等. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质,2022,49(5):52 − 62. [CUI Haohao,ZHANG Guanghui,LIU Pengfei,et al. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology,2022,49(5):52 − 62. (in Chinese with English abstract)

    CUI Haohao, ZHANG Guanghui, LIU Pengfei, et al. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. (in Chinese with English abstract)
    [32]
    吴奇凡,樊军,王继军. 晋陕蒙接壤区露天矿不同质地土壤水分运动特征与模拟[J]. 煤炭学报,2015,40(5):1134 − 1142. [WU Qifan,FAN Jun,WANG Jijun. Water movement and simulation of different soil textures at open pit mine in Jin-Shan-Meng adjacent region[J]. Journal of China Coal Society,2015,40(5):1134 − 1142. (in Chinese with English abstract)

    WU Qifan, FAN Jun, WANG Jijun. Water movement and simulation of different soil textures at open pit mine in Jin-Shan-Meng adjacent region[J]. Journal of China Coal Society, 2015, 40(5): 1134-1142. (in Chinese with English abstract)
    [33]
    陶正平,黄金廷,崔旭东. 鄂尔多斯盆地北部风积沙覆基岩型包气带结构的生态意义[J]. 地下水,2007,29(6):54 − 55. [TAO Zhengping,HUANG Jinting,CUI Xudong. The eco-significance of the sand-sandrock vadose zone structure in the north of the Erdos Basin[J]. Ground Water,2007,29(6):54 − 55. (in Chinese with English abstract)

    TAO Zhengping, HUANG Jinting, CUI Xudong. The eco-significance of the sand-sandrock vadose zone structure in the north of the Erdos Basin[J]. Ground Water, 2007, 29(6): 54-55. (in Chinese with English abstract)
    [34]
    JIA Junchao,ZHANG Pingping,YANG Xiaofeng,et al. Feldspathic sandstone addition and its impact on hydraulic properties of sandy soil[J]. Canadian Journal of Soil Science,2018,98(3):399 − 406. DOI: 10.1139/cjss-2017-0111
    [35]
    许尊秋,毛晓敏,陈帅. 层状土层序排列对水分运移影响的室内土槽试验[J]. 中国农村水利水电,2016(8):59 − 62. [XU Zunqiu,MAO Xiaomin,CHEN Shuai. Tank experiment on the influence of the sequence alignment on water movement in multi-layered soil[J]. China Rural Water and Hydropower,2016(8):59 − 62. (in Chinese with English abstract)

    XU Zunqiu, MAO Xiaomin, CHEN Shuai. Tank experiment on the influence of the sequence alignment on water movement in multi-layered soil[J]. China Rural Water and Hydropower, 2016(8): 59-62. (in Chinese with English abstract)
    [36]
    赵明,王文科,王周锋,等. 半干旱区沙地沙蒿生物量及根系分布特征研究[J]. 干旱区地理,2018,41(4):786 − 792. [ZHAO Ming,WANG Wenke,WANG Zhoufeng,et al. Biomass of Artemisia ordosica in sand land and its root system distribution characteristics in the semiarid regions[J]. Arid Land Geography,2018,41(4):786 − 792. (in Chinese with English abstract)

    ZHAO Ming, WANG Wenke, WANG Zhoufeng, et al. Biomass of Artemisia ordosica in sand land and its root system distribution characteristics in the semiarid regions[J]. Arid Land Geography, 2018, 41(4): 786-792. (in Chinese with English abstract)
  • Related Articles

    [1]TAN Siqi, ZHOU Jianwei, GONG Yongfeng, LI Ran, FENG Haibo. Optimization of composite atmospheric hygroscopic gel preparation and its application in ecological restoration in arid-semi-arid regions[J]. Hydrogeology & Engineering Geology. DOI: 10.16030/j.cnki.issn.1000-3665.202502049
    [2]LIU Yongyi, SHI Tingting, WANG Qing, LIU Tianwen, LIU Yalei, LI Mengru. A study of dispersion experiment and simulation of the cohesive layered soil in the transition zone of the Jianghan Plain[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 41-50. DOI: 10.16030/j.cnki.issn.1000-3665.202201036
    [3]MA Zhitong, WANG Wenke, ZHAO Ming, HUANG Jinting, LU Yanying, HOU Xinyue, WANG Yi. Hydrothermal transfer and bare soil evaporation in surface-groundwater systems in semi-arid areas[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 7-14. DOI: 10.16030/j.cnki.issn.1000-3665.202012026
    [4]YIN Xiaowei, WU Yiping, ZHAO Wenzhi, ZHAO Fubo, SUN Pengcheng, SONG Yanni, QIU Linjing. Drought characteristics and sensitivity of potential evapotranspiration to climatic factors in the arid and semi-arid areas of northwest China[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 20-30. DOI: 10.16030/j.cnki.issn.1000-3665.202012012
    [5]LI Haoxu, SHAO Jingli, CUI Yali, MA Xiaobo. Effects of different crop covers on vertical groundwater recharge[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 57-65. DOI: 10.16030/j.cnki.issn.1000-3665.2019.02.09
    [6]DOU Zengning, ZHAO Yujiao, LIU Changyi, HU Xiasong, XU Zhiwen, LU Haijing. Soil displacement and earth pressure characteristics of slopes in a cold and arid region under rainfall simulation[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 117-122. DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.18
    [7]LI Hui, LIANG Xing, LIU Yanfeng. Simulation of water flux of SPAC continuum in a cotton field under mulched drip irrigation in an arid area[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 21-28. DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.04
    [8]TANGYang, . Research on the regulation of rain infiltration in the Sanzhouxi landslide based on HYDRUS[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 152-156.
    [9]Research on the observation of condensed recharge in a water balance field of Urab Xinjiang province[J]. Hydrogeology & Engineering Geology, 2012, 39(2): 7-12.
    [10]ZHAOGui-zhang~, . Determination of thermal parameter of aerated zone in the arid and semi-arid region[J]. Hydrogeology & Engineering Geology, 2009, 36(5): 107-110.
  • Cited by

    Periodical cited type(7)

    1. 王皓,王强民,董书宁,王晓东,葛光荣,张溪彧,曹书苗,张全. 西部典型煤矿区采动水文生态效应及修复途径. 煤炭学报. 2025(01): 610-622 .
    2. 亓国涛,王荣,史歆晔. 基于多领域协同视角下生态保护修复刍议. 世界有色金属. 2024(04): 130-133 .
    3. 魏鹏,刘云,史歆晔. 基于多学科交叉背景的生态保护修复研究. 世界有色金属. 2024(06): 143-146 .
    4. 李国营,李瑞冬,李文彦. 人工智能背景下生态修复规划发展路径探析. 世界有色金属. 2024(08): 177-180 .
    5. 刘馨泽,高文皓,徐荣林,孙东,姜莉萍,唐淑,仁青周,徐梦宇,翟胜强. 四川黄龙高山柳灌丛区钙华彩池地表水渗漏机制探究. 水文地质工程地质. 2024(05): 195-206 . 本站查看
    6. 贾振江,吴洋洋,李王成,马东祥,陈继虹,高素素,牛宵宵,徐天渊. 隔层创建技术的土壤生态环境效应进展分析与发展展望. 水土保持学报. 2024(06): 1-12+22 .
    7. 梁世伟,许领,胡而已. 露天矿山生态修复中的土壤重构试验. 地质科技通报. 2023(06): 242-248+256 .

    Other cited types(3)

Catalog

    Article views (2589) PDF downloads (300) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return