ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
LAN Mingqing, QIU Min. Application Research of Precipitation Dynamic Compaction Technology in the Treatment of Silty Clay Sites: A Case Study of Yangluo Tieshui[J]. Hydrogeology & Engineering Geology, 2025, 52(0): 1-10. DOI: 10.16030/j.cnki.issn.1000-3665.202403046
Citation: LAN Mingqing, QIU Min. Application Research of Precipitation Dynamic Compaction Technology in the Treatment of Silty Clay Sites: A Case Study of Yangluo Tieshui[J]. Hydrogeology & Engineering Geology, 2025, 52(0): 1-10. DOI: 10.16030/j.cnki.issn.1000-3665.202403046

Application Research of Precipitation Dynamic Compaction Technology in the Treatment of Silty Clay Sites: A Case Study of Yangluo Tieshui

More Information
  • Received Date: March 21, 2024
  • Revised Date: July 15, 2024
  • Available Online: March 16, 2025
  • This study addresses the ineffective application of traditional soft foundation treatment methods in muck clay soil foundations. Using the Yangluoxiang project as an example, the study explores the reinforcement mechanism and construction process parameters of a new type of dewatering-intensive tamping technique in soft soil foundation treatment. The study innovatively combines the tamping technique with the well-point dewatering method, fully utilizing the characteristics of well-points to reduce excess pore water pressure generated by the tamping technique and to discharge the pore water. In the Yangluoxiang project, the groundwater level was lowered to 3 meters below the ground surface in about 2 days before the first round of tamping, to 5 meters below the ground surface in about 3 days before the second round of tamping, and to 5 meters below the ground surface in about 6 days before the tamping, with the entire dewatering cycle taking about 11 days. After the first round of tamping, the excess pore water pressure dissipated by 70% in about 7 days. The test results show that the dewatering-intensive tamping method can significantly improve the consolidation of soft clay in a short time, reduce the occurrence of the "rubber soil" phenomenon, effectively treat the soil to a depth of 6.0 meters, and significantly improve the bearing capacity of the soft soil foundation (>150 kPa). This study provides a theoretical basis and construction process parameters for soft soil foundation treatment projects that are widely distributed in the coastal regions of China.

  • [1]
    杨云玫. 深圳机场换填地基拦淤堤沉底技术研究[J]. 人民长江,1990,(9):24 − 29. [Yang Y M. Research on bottom-settling technology of subgrade filling embankment to stop silt in Shenzhen Airport[J]. 1990,(9):24 − 29. (in Chinese )]

    Yang Y M. Research on bottom-settling technology of subgrade filling embankment to stop silt in Shenzhen Airport[J]. 1990, (9): 24 − 29. (in Chinese )
    [2]
    么玉鹏,姚坚毅,唐世雄. 珠江口地区岩土层工程地质特征及物理力学性质研究[J]. 水文地质工程地质,2022,49(2):64 − 70. [Mei Y P,Yao J Y,Tang S X. Study on engineering geological characteristics and physical and mechanical properties of rock and soil layers in the the Pearl River Estuary area[J]. Hydrogeology and Engineering Geology,2022,49(2):64 − 70. (in Chinese )]

    Mei Y P, Yao J Y, Tang S X. Study on engineering geological characteristics and physical and mechanical properties of rock and soil layers in the the Pearl River Estuary area[J]. Hydrogeology and Engineering Geology, 2022, 49(2): 64 − 70. (in Chinese )
    [3]
    加瑞,赵栋,雷华阳. 黏土结构性对孔压静力触探结果的影响分析[J]. 水文地质工程地质,2023,50(5):80 − 88. [Jia R,Zhao D,Lei H Y. Analysis of the influence of clay structure on the results of pore pressure static penetration test[J]. Hydrogeology and Engineering Geology,2023,50(5):80 − 88. (in Chinese )]

    Jia R, Zhao D, Lei H Y. Analysis of the influence of clay structure on the results of pore pressure static penetration test[J]. Hydrogeology and Engineering Geology, 2023, 50(5): 80 − 88. (in Chinese )
    [4]
    杨爱武,杨少朋,杨少坤,等. 冻融循环作用下城市污泥固化土动强度特性研究[J]. 工程地质学报,2020,30(4):1044 − 1058. [Yang A W,Yang S P,Yang S K,et al. Dynamic performance of municipal sludge solidified soil under freeze thaw cycle[J]. Journal of Engineering Geology,2020,30(4):1044 − 1058. (in Chinese )]

    Yang A W, Yang S P, Yang S K, et al. Dynamic performance of municipal sludge solidified soil under freeze thaw cycle[J]. Journal of Engineering Geology, 2020, 30(4): 1044 − 1058. (in Chinese )
    [5]
    金胜赫,王修山,吴越鹏. 矿渣-脱硫石膏-电石渣固化剂固化黏土的研究[J]. 工程地质学报,2023,31(2):397 − 408. [Jin H S,Wang X S,Wu Y P. Study on modification of marine clay treated with new GDC soil stabilizer[J]. Journal of Engineering Geology,2023,31(2):397 − 408. (in Chinese )]

    Jin H S, Wang X S, Wu Y P. Study on modification of marine clay treated with new GDC soil stabilizer[J]. Journal of Engineering Geology, 2023, 31(2): 397 − 408. (in Chinese )
    [6]
    Wang D,Yang D,Yuan Y. Strength improvement and micromechanism of inorganic/ organic additive-modified magnesium oxychloride cement solidified sludge[J]. Construction and Building Materials,2023,366:130 − 159.
    [7]
    Arulrajah A,Abdullah A,Bo M W,et al. Ground improvement techniques for railway embankments[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement,2009,162(1):3 − 14. DOI: 10.1680/grim.2009.162.1.3
    [8]
    Consoli N C,da Silva A B,Festugato L. Parameters controlling stiffness and strength of lime-stabilized soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2011,137(6):628 − 632. DOI: 10.1061/(ASCE)GT.1943-5606.0000470
    [9]
    Zuber S Z S,Kamarudin H,Abdullah M,et al. Review on soil stabilization techniques[J]. Australian Journal of Basic and Applied Sciences,2013,7(5):258 − 265.
    [10]
    陈锐,郝若愚,李笛,等. 碱激发材料固化低液限粉黏土路用性能及抗冻融特性研究[J]. 工程地质学报,2022,30(2):327 − 337. [Chen R,Hao R Y,Li D,et al. Study on road performance and freeze thaw resistance of alkali activated material stabilized low liquid limit silty clay[J]. Journal of Engineering Geology,2022,30(2):327 − 337. (in Chinese)]

    Chen R, Hao R Y, Li D, et al. Study on road performance and freeze thaw resistance of alkali activated material stabilized low liquid limit silty clay[J]. Journal of Engineering Geology, 2022, 30(2): 327 − 337. (in Chinese)
    [11]
    李丽华,韩琦培,杨星,等. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究[J]. 土木工程学报,[Li L H,Han Q P,Yang X,et al. Mechanical properties and micro-mechanisms of RHA-cement solidified sludge[J]. China Civil Engineering Journal,2023,56(12):166-176. (in Chinese )].
    [12]
    Aiken T A,Kwasny J,Russell M,et al. Effect of partial MgO replacement on the properties of magnesium oxychloride cement[J]. Cement and Concrete Composites,2022,134:104 − 791.
    [13]
    牛鹏尧,庄建琦,贾珂程,等. 聚丙烯酸钠混合剂固化黄土特性研究[J]. 工程地质学报,2020,30(4):1028 − 1035. [Niu P Y,Zhuang J Q,Jia K C,et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology,2020,30(4):1028 − 1035. (in Chinese )]

    Niu P Y, Zhuang J Q, Jia K C, et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology, 2020, 30(4): 1028 − 1035. (in Chinese )
    [14]
    Han J. 2015. Principles and practice of ground improvement. John Wiley & Sons.
    [15]
    姚宝宽,刘聪,李全军,等. 真空井点降水,挤密砂桩联合浅层强夯在软基处理中的应用[J]. 地基处理,2021,3(2):118 − 125. [Yao B K,Liu C,Li Q J,et al. Application of vacuum well point dewatering and sand compaction pile combined with dynamic compaction method in soft foundation treatment[J]. Journal of Ground Improvement,2021,3(2):118 − 125. (in Chinese )]

    Yao B K, Liu C, Li Q J, et al. Application of vacuum well point dewatering and sand compaction pile combined with dynamic compaction method in soft foundation treatment[J]. Journal of Ground Improvement, 2021, 3(2): 118 − 125. (in Chinese )
    [16]
    雷鸣,王星华,唐依民. 基于孔压实测资料的真空预压机理及沉降计算探讨[J]. 水文地质工程地质,2010,37(6):81 − 85. [Lei M,Wang X H,Tang Y M. Discussion of the mechanism of vacuum preloading and settlement calculation based on measured values of pore water pressure[J]. Hydrogeology & Engineering Geology,2010,37(6):81 − 85. (in Chinese)] DOI: 10.3969/j.issn.1000-3665.2010.06.016

    Lei M, Wang X H, Tang Y M. Discussion of the mechanism of vacuum preloading and settlement calculation based on measured values of pore water pressure[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 81 − 85. (in Chinese) DOI: 10.3969/j.issn.1000-3665.2010.06.016
    [17]
    刘景锦,雷华阳,卢海滨,等. 真空预压法淤堵泥层形成机理及预测模型研究[J]. 水文地质工程地质,2017,44(3):61 − 71. [Liu J J,Lei H Y,Lu H B,et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology,2017,44(3):61 − 71. (in Chinese )]

    Liu J J, Lei H Y, Lu H B, et al. A study of siltation mud formation mechanism and prediction model of vacuum preloading method[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 61 − 71. (in Chinese )
    [18]
    张军舰,李鹏,殷坤宇,罗玉磊,等. 基于接力排水的强夯法在滨海回填区地基处理中的试验研究[J]. 水文地质工程地质,2022,49(1):117 − 125. [Zhang J J,Li P,Yin K Y,Luo Y L,et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology,2022,49(1):117 − 125. (in Chinese )]

    Zhang J J, Li P, Yin K Y, Luo Y L, et al. An experimental study of the dynamic compaction method based on relay drainage in foundation treatment of the coastal backfill area[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 117 − 125. (in Chinese )
    [19]
    杜健,刘红玫,张豫川. 夯扩挤密法室内模型试验研究[J]. 水文地质工程地质,2016,43(05):81-86. [Du J,Liu H M,Zhang Y C. 2016. Model tests on down hole deep compaction pile [J]. Hydrogeology & Engineering Geology,43(05):81-86. (in Chinese)]

    Du J, Liu H M, Zhang Y C. 2016. Model tests on down hole deep compaction pile [J]. Hydrogeology & Engineering Geology, 43(05): 81-86. (in Chinese)
    [20]
    李富春,张璟泓,周红星,等. 粉粒及黏粒含量对强夯加固粉细砂土层效果的影响[J]. 人民长江,2022,53(08):186-191. [Li F C,Zhang J H,Zhou H X,et al. Study on influence of silt particle and clay particle on dynamic compaction effect of silty fine sand[J],Yangtze River,2022,53(08):186-191. (in Chinese )]

    Li F C, Zhang J H, Zhou H X, et al. Study on influence of silt particle and clay particle on dynamic compaction effect of silty fine sand[J], Yangtze River, 2022, 53(08): 186-191. (in Chinese )
    [21]
    刘强,高立群,赵民,等. 强夯置换对软土基坑边坡开挖稳定性的影响研究[J/OL]. 人民长江:2024,1-10. [Liu Q,Gao L Q,Zhao M,et al. Study on the influence of dynamic replacemen on the excavation stability of soft soil foundation pit[J]. Yangtze River. 2024,1-10. (in Chinese)]

    Liu Q, Gao L Q, Zhao M, et al. Study on the influence of dynamic replacemen on the excavation stability of soft soil foundation pit[J]. Yangtze River. 2024, 1-10. (in Chinese)
    [22]
    Ghorbani J,Nazem M,Carter J P. Dynamic compaction of clays:numerical study based on the mechanics of unsaturated soils[J]. International Journal of Geomechanics,2020,20(10):1943 − 5622.
    [23]
    董炳寅,水伟厚,秦劭杰. 中国强夯 40 年之技术创新[J]. 地基处理,2022,4(1):1 − 16. [Dong B Y,Shui W H,Qin S J,et al. Technological innovation of dynamic compaction in China for forty years[J]. Journal of Ground Improvement,2022,4(1):1 − 16. (in Chinese )]

    Dong B Y, Shui W H, Qin S J, et al. Technological innovation of dynamic compaction in China for forty years[J]. Journal of Ground Improvement, 2022, 4(1): 1 − 16. (in Chinese )
    [24]
    刘嘉,罗彦,张功新,等. 井点降水联合强夯法加固饱和淤泥质地基的试验研究. 岩石力学与工程学报,2009,(11),2222 − 2227. [Liu J,Luo Y,Zhang G X,et al. Experimental research on saturated mucky foundation treatment with well-point dewatering combined with dynamic compaction method. Chinese Journal of Rock Mechanics and Engineering. 2009,(11),2222 − 2227. (in Chinese)]

    Liu J, Luo Y, Zhang G X, et al. Experimental research on saturated mucky foundation treatment with well-point dewatering combined with dynamic compaction method. Chinese Journal of Rock Mechanics and Engineering. 2009, (11), 2222 − 2227. (in Chinese)
    [25]
    Ghassemi A,Pak A,Shahir H. Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils[J]. Computers and Geotechnics,2010,37(1 − 2):10 − 24. DOI: 10.1016/j.compgeo.2009.06.009
    [26]
    孙文怀,杨志刚,杜小川. 增湿高能级强夯法处理湿陷性黄土地基的研究[J]. 水文地质工程地质,2012,39(2):74 − 78. [Sun W H,Yang Z G,Du X C. Research on the treatment of collapsible loess foundation using high-energy level dynamic compaction method with increased humidity[J]. Hydrogeology and Engineering Geology,2012,39(2):74 − 78. (in Chinese)]

    Sun W H, Yang Z G, Du X C. Research on the treatment of collapsible loess foundation using high-energy level dynamic compaction method with increased humidity[J]. Hydrogeology and Engineering Geology, 2012, 39(2): 74 − 78. (in Chinese)
    [27]
    黄涛,张西华,曹江英,等. 强夯法控制高填方变形的离心模型试验[J]. 水文地质工程地质,2007(4):121 − 125. [Huang T,Zhang X H,Cao J Y,et al. Centrifugal model test for controlling high fill deformation using dynamic compaction method[J]. Hydrogeological Engineering Geology,2007(4):121 − 125. (in Chinese)] DOI: 10.3969/j.issn.1000-3665.2007.04.028

    Huang T, Zhang X H, Cao J Y, et al. Centrifugal model test for controlling high fill deformation using dynamic compaction method[J]. Hydrogeological Engineering Geology, 2007(4): 121 − 125. (in Chinese) DOI: 10.3969/j.issn.1000-3665.2007.04.028
    [28]
    周健,曹宇,贾敏才,等. 强夯-降水联合加固饱和软粘土地基试验研究[J]. 岩土力学,2003,24(3):376 − 380. [Zhou J,Cao Y,Jia M C,et al. In-situ test study on soft soils improvement by the DCM combined with dewatering[J]. Rock and soil mechanics. 2003,24(3):376 − 380. (in Chinese)]

    Zhou J, Cao Y, Jia M C, et al. In-situ test study on soft soils improvement by the DCM combined with dewatering[J]. Rock and soil mechanics. 2003, 24(3): 376 − 380. (in Chinese)
    [29]
    Mayne P W,Jones Jr J S,Dumas J C. Ground response to dynamic compaction[J]. Journal of Geotechnical Engineering,1984,110(6):757 − 774. DOI: 10.1061/(ASCE)0733-9410(1984)110:6(757)

Catalog

    Article views (3) PDF downloads (1) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return