Citation: | YANG Haoming, HUANG Qiangbing, XIE Qingyu, et al. Duncan-Chang damage constitutive model of saturated compacted loess[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 79-90. DOI: 10.16030/j.cnki.issn.1000-3665.202406051 |
The instantaneous settlement of high railway foundation in loess area is closely related to the mechanical properties of saturated compacted loess. The constitutive relationship of saturated compacted loess is an important way to characterize its mechanical properties; however, Duncan-Chang constitutive model is difficult to accurately describe the strain softening characteristics of compacted loess after failure. To improve the adaptability of Duncan-Chang constitutive model, statistical damage theory is introduced to establish Duncan-Chang damage constitutive model of saturated compacted loess. Qp3 loess in Xiyan high-speed railway filling area was selected to carry out consolidation undrained triaxial tests with different compaction degrees. The vumat subroutine was then written for verification. The triaxial test of saturated compacted loess and the finite element numerical simulation of subgrade settlement under different compaction degrees and filling slopes were conducted. The results show that the compacted loess in the filling area shows strain softening characteristics when it is sheared. The peak strength and initial deformation modulus increase with the increase of compaction degree, while the increase of peak strength decreases with the increase of compaction degree. The increase of initial deformation modulus increases with the increase of compaction degree. The vumat subroutine based on Duncan-Chang constitutive model with statistical damage is used to verify the shear strength of compacted loess in triaxial test, and the results are consistent, indicating the mechanical characteristics of strain softening of compacted loess in filling area. Through vumat calculation, the settlement of filled subgrade decreases with the increase of compactness and increases with the increase of fill slope. This study can provide basic information for the calculation and analysis of the instantaneous settlement of fill subgrade in the loess area.
[1] |
ROGERS C D F,DIJKSTRA T A,SMALLEY I J. Hydroconsolidation and subsidence of loess:Studies from China,Russia,North America and Europe:In memory of Jan Sajgalik[J]. Engineering Geology,1994,37(2):83 − 113. DOI: 10.1016/0013-7952(94)90045-0
|
[2] |
RYASHCHENKO T G,AKULOVA V V,ERBAEVA M A. Loessial soils of Priangaria,Transbaikalia,Mongolia,and northwestern China[J]. Quaternary International,2008,179(1):90 − 95. DOI: 10.1016/j.quaint.2007.06.035
|
[3] |
YATES K,FENTON C H,BELL D H. A review of the geotechnical characteristics of loess and loess-derived soils from Canterbury,South Island,New Zealand[J]. Engineering Geology,2018,236:11 − 21. DOI: 10.1016/j.enggeo.2017.08.001
|
[4] |
黄强兵,王涛,刘悦,等. 跨地裂缝带高铁路基动力响应及CFG桩地基加固优化研究[J]. 铁道学报,2020,42(1):103 − 111. [HUANG Qiangbing,WANG Tao,LIU Yue,et al. Study on dynamic response of high-speed railway subgrade crossing ground fissure zone and optimization of foundation reinforcement of CFG piles[J]. Journal of the China Railway Society,2020,42(1):103 − 111. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1001-8360.2020.01.015
HUANG Qiangbing, WANG Tao, LIU Yue, et al. Study on dynamic response of high-speed railway subgrade crossing ground fissure zone and optimization of foundation reinforcement of CFG piles[J]. Journal of the China Railway Society, 2020, 42(1): 103 − 111. (in Chinese with English abstract) DOI: 10.3969/j.issn.1001-8360.2020.01.015
|
[5] |
夏万云. 银西高铁董志塬地区边坡侵蚀特性分析[J]. 中国地质灾害与防治学报,2022,33(1):99 − 106. [XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control,2022,33(1):99 − 106. (in Chinese with English abstract)]
XIA Wanyun. Analysis on characteristic of slope erosion in Dongzhiyuan plateau of Yinchuan-Xi’an high-speed railway[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(1): 99 − 106. (in Chinese with English abstract)
|
[6] |
HUANG Qiangbing,GOU Yuxuan,PENG Bo,et al. Model test study on the deformation and failure mechanism of high-speed railway subgrade obliquely crossing ground fissure zones[J]. Transportation Geotechnics,2023,41:101010. DOI: 10.1016/j.trgeo.2023.101010
|
[7] |
HU Jinfang,LIU Hongtai,REN Wenyuan,et al. An experimental study for evaluation of collapsible loess roadbed replacement method using lightweight soil[J]. Bulletin of Engineering Geology and the Environment,2023,82(9):359. DOI: 10.1007/s10064-023-03376-0
|
[8] |
王韵,王红雨,李其星,等. 探地雷达在湿陷性黄土挖填方高边坡土体性状探测中的应用[J]. 中国地质灾害与防治学报,2023,34(2):102 − 110. [WANG Yun,WANG Hongyu,LI Qixing,et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control,2023,34(2):102 − 110. (in Chinese with English abstract)]
WANG Yun, WANG Hongyu, LI Qixing, et al. Application of the ground-penetrating radar technology in detection of soil properties of the high cutting and filling slopes in collapsible loess area[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 102 − 110. (in Chinese with English abstract)
|
[9] |
赵丹旗,付昱凯,侯晓坤,等. 不同应力路径下饱和重塑黄土的力学特性[J]. 水文地质工程地质,2022,49(6):74 − 80. [ZHAO Danqi,FU Yukai,HOU Xiaokun,et al. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology,2022,49(6):74 − 80. (in Chinese with English abstract)]
ZHAO Danqi, FU Yukai, HOU Xiaokun, et al. Mechanical properties of saturated remolded loess under different stress paths[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 74 − 80. (in Chinese with English abstract)
|
[10] |
YU Daijin,HUANG Qiangbing,KANG Xiaosen,et al. The unsaturated seepage process and mechanism of internal interfaces in loess-filled slopes during intermittent rainfall[J]. Journal of Hydrology,2023,619:129317. DOI: 10.1016/j.jhydrol.2023.129317
|
[11] |
谢婉丽,葛瑞华,郭倩怡,等. 灌溉作用下黄土宏观力学响应及微观结构特性研究[J]. 水文地质工程地质,2017,44(2):82 − 89. [XIE Wanli,GE Ruihua,GUO Qianyi,et al. A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism[J]. Hydrogeology & Engineering Geology,2017,44(2):82 − 89. (in Chinese with English abstract)]
XIE Wanli, GE Ruihua, GUO Qianyi, et al. A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 82 − 89. (in Chinese with English abstract)
|
[12] |
刘银鹏,李同录,胡向阳,等. 陇东陕甘边界降雨水毁灾情调查与启示[J]. 中国地质灾害与防治学报,2022,33(3):77 − 83. [LIU Yinpeng,LI Tonglu,HU Xiangyang,et al. Investigation of water induced damages triggered by rainfall in east Gansu and the implications[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):77 − 83. (in Chinese with English abstract)]
LIU Yinpeng, LI Tonglu, HU Xiangyang, et al. Investigation of water induced damages triggered by rainfall in east Gansu and the implications[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(3): 77 − 83. (in Chinese with English abstract)
|
[13] |
高志傲,李萍,肖俊杰,等. 利用常规直剪试验评价非饱和黄土抗剪强度[J]. 工程地质学报,2020,28(2):344 − 351. [GAO Zhiao,LI Ping,XIAO Junjie,et al. Evaluation of shear strength of unsaturated loess using conventional direct shear test[J]. Journal of Engineering Geology,2020,28(2):344 − 351. (in Chinese with English abstract)]
GAO Zhiao, LI Ping, XIAO Junjie, et al. Evaluation of shear strength of unsaturated loess using conventional direct shear test[J]. Journal of Engineering Geology, 2020, 28(2): 344 − 351. (in Chinese with English abstract)
|
[14] |
陈林万,裴向军,张晓超,等. 不同压实度下黄土填方边坡失稳的模型试验研究[J]. 水文地质工程地质,2022,49(2):137 − 147. [CHEN Linwan,PEI Xiangjun,ZHANG Xiaochao,et al. A model test study of the instability of loess fill slope under different compactness[J]. Hydrogeology & Engineering Geology,2022,49(2):137 − 147. (in Chinese with English abstract)]
CHEN Linwan, PEI Xiangjun, ZHANG Xiaochao, et al. A model test study of the instability of loess fill slope under different compactness[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 137 − 147. (in Chinese with English abstract)
|
[15] |
GUO Zhiyu,HUANG Qiangbing,LIU Yue,et al. Model experimental study on the failure mechanisms of a loess-bedrock fill slope induced by rainfall[J]. Engineering Geology,2023,313:106979. DOI: 10.1016/j.enggeo.2022.106979
|
[16] |
郑建国,曹杰,张继文,等. 基于离心模型试验的黄土高填方沉降影响因素分析[J]. 岩石力学与工程学报,2019,38(3):560 − 571. [ZHENG Jianguo,CAO Jie,ZHANG Jiwen,et al. Analysis of influencing factors of high loess-filled foundations based on centrifugal model tests[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(3):560 − 571. (in Chinese with English abstract)]
ZHENG Jianguo, CAO Jie, ZHANG Jiwen, et al. Analysis of influencing factors of high loess-filled foundations based on centrifugal model tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 560 − 571. (in Chinese with English abstract)
|
[17] |
ZHAO Meng,CHEN Liyi,WANG Shanyong,et al. Experimental study of the microstructure of loess on its macroscopic geotechnical properties of the Baozhong railway subgrade in Ningxia,China[J]. Bulletin of Engineering Geology and the Environment,2020,79(9):4829 − 4840. DOI: 10.1007/s10064-020-01816-9
|
[18] |
LIU Yuyang,LAI Hongpeng,XIE Yongli,et al. Cracks analysis of highway tunnel lining in flooded loess[J]. Proceedings of the Institution of Civil Engineers Geotechnical Engineering,2016,170(1):62 − 72.
|
[19] |
JIA Pengjiao,KHOSHGHALB A,CHEN Chen,et al. Modified Duncan-Chang constitutive model for modeling supported excavations in granular soils[J]. International Journal of Geomechanics,2020,20(11):04020211. DOI: 10.1061/(ASCE)GM.1943-5622.0001848
|
[20] |
胡长明,梅源,王雪艳. 吕梁地区压实马兰黄土变形与抗剪强度特性[J]. 工程力学,2013,30(10):108 − 114. [HU Changming,MEI Yuan,WANG Xueyan. Deformation and shearing strength characteristic of compacted malan loess in Lüliang region[J]. Engineering Mechanics,2013,30(10):108 − 114. (in Chinese with English abstract)] DOI: 10.6052/j.issn.1000-4750.2012.06.0441
HU Changming, MEI Yuan, WANG Xueyan. Deformation and shearing strength characteristic of compacted malan loess in Lüliang region[J]. Engineering Mechanics, 2013, 30(10): 108 − 114. (in Chinese with English abstract) DOI: 10.6052/j.issn.1000-4750.2012.06.0441
|
[21] |
袁小平,刘红岩,王志乔. 基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究[J]. 岩土力学,2012,33(4):1103 − 1108. [YUAN Xiaoping,LIU Hongyan,WANG Zhiqiao. Study of elastoplastic damage constitutive model of rocks based on Drucker-Prager criterion[J]. Rock and Soil Mechanics,2012,33(4):1103 − 1108. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1000-7598.2012.04.021
YUAN Xiaoping, LIU Hongyan, WANG Zhiqiao. Study of elastoplastic damage constitutive model of rocks based on Drucker-Prager criterion[J]. Rock and Soil Mechanics, 2012, 33(4): 1103 − 1108. (in Chinese with English abstract) DOI: 10.3969/j.issn.1000-7598.2012.04.021
|
[22] |
WANG Hui,HUAN Xiaolin,CHEN Yuqi,et al. Macro-mesoscopic Duncan-Chang damage model for hydrate-bearing sediments considering coupling effect of temperature-pore pressure condition[J]. Journal of Zhejiang University (Engineering Science),2021,55(9):1734 − 1743.
|
[23] |
LI Jianwei,ZHANG Yu,LIN Liang,et al. Study on the shear mechanics of gas hydrate-bearing sand-well interface with different roughness and dissociation[J]. Bulletin of Engineering Geology and the Environment,2023,82(11):404. DOI: 10.1007/s10064-023-03432-9
|
[24] |
中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for geotechnical test methods:GB/T 50123—2019[S]. Beijing:China Planning Press,2019 (in Chinese with English abstract)]
Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019 (in Chinese with English abstract)
|
[25] |
国家铁路局. 铁路路基设计规范:TB 10001—2016[S]. 北京:中国铁道出版社,2016. [National Railway Administration of People’s Republic of China. Code for design of railway Earth Structure:TB 10001—2016[S]. Beijing:China Railway Press,2016 (in Chinese with English abstract)]
National Railway Administration of People’s Republic of China. Code for design of railway Earth Structure: TB 10001—2016[S]. Beijing: China Railway Press, 2016 (in Chinese with English abstract)
|
[26] |
杨光华,姚丽娜,姜燕,等. 基于e-p曲线的软土地基非线性沉降的实用计算方法[J]. 岩土工程学报,2015(2):242 − 249. [YANG Guanghua,YAO Lina,JIANG Yan,et al. Practical method for calculating nonlinear settlement of soft ground based on e-p curve[J]. Chinese Journal of Geotechnical Engineering,2015(2):242 − 249. (in Chinese with English abstract)] DOI: 10.11779/CJGE201502005
YANG Guanghua, YAO Lina, JIANG Yan, et al. Practical method for calculating nonlinear settlement of soft ground based on e-p curve[J]. Chinese Journal of Geotechnical Engineering, 2015(2): 242 − 249. (in Chinese with English abstract) DOI: 10.11779/CJGE201502005
|
[27] |
谢杰辉,牛富俊,彭智育,等. 滨海高速公路软基变形规律及沉降预测应用[J]. 华南理工大学学报(自然科学版),2021,49(4):97 − 107. [XIE Jiehui,NIU Fujun,PENG Zhiyu,et al. Deformation law and settlement prediction application of soft soil subgrade in coastal expressway[J]. Journal of South China University of Technology (Natural Science Edition),2021,49(4):97 − 107. (in Chinese with English abstract)]
XIE Jiehui, NIU Fujun, PENG Zhiyu, et al. Deformation law and settlement prediction application of soft soil subgrade in coastal expressway[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(4): 97 − 107. (in Chinese with English abstract)
|
[28] |
雷华阳,万勇峰,冯双喜. 不同潮汐水位下深厚滩涂软土路基长期沉降规律及预测研究[J]. 天津大学学报(自然科学与工程技术版),2022,55(6):584 − 595. [LEI Huayang,WAN Yongfeng,FENG Shuangxi. Study on long-term settlement law and prediction of deep beach soft soil subgrade under different tidal levels[J]. Journal of Tianjin University(Science and Technology),2022,55(6):584 − 595. (in Chinese with English abstract)]
LEI Huayang, WAN Yongfeng, FENG Shuangxi. Study on long-term settlement law and prediction of deep beach soft soil subgrade under different tidal levels[J]. Journal of Tianjin University(Science and Technology), 2022, 55(6): 584 − 595. (in Chinese with English abstract)
|
[29] |
王伯昕,刘佳奇,王清,等. 冻融循环条件下粉质黏土-混凝土界面细观损伤及宏观剪切性能研究[J]. 岩石力学与工程学报,2023,42(增刊1):3792 − 3800. [WANG Baixin,LIU Jiaqi,WANG Qing,et al. Study of meso-damage and macroscopic shear performance of silty clay-concrete interface under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(Sup1):3792 − 3800. (in Chinese with English abstract)]
WANG Baixin, LIU Jiaqi, WANG Qing, et al. Study of meso-damage and macroscopic shear performance of silty clay-concrete interface under freeze-thaw cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(Sup1): 3792 − 3800. (in Chinese with English abstract)
|
[30] |
李泽闯,张昊,程培峰,等. 含粗粒滑带土剪切带演化及空间展布规律研究[J]. 岩土力学,2024,45(4):1067 − 1080. [LI Zechuang,ZHANG Hao,CHENG Peifeng,et al. Experimental study on the development process and spatial distribution of shear band of coarse-grained sliding zone soil[J]. Rock and Soil Mechanics,2024,45(4):1067 − 1080. (in Chinese with English abstract)]
LI Zechuang, ZHANG Hao, CHENG Peifeng, et al. Experimental study on the development process and spatial distribution of shear band of coarse-grained sliding zone soil[J]. Rock and Soil Mechanics, 2024, 45(4): 1067 − 1080. (in Chinese with English abstract)
|
[31] |
李广信. 高等土力学[M]. 北京:清华大学出版社,2016. [LI Guangxin. Advanced soil mechanics [M]. Beijing:Tsinghua University Press,2016. (in Chinese with English abstract)]
LI Guangxin. Advanced soil mechanics [M]. Beijing: Tsinghua University Press, 2016. (in Chinese with English abstract)
|
[32] |
谭维佳,魏云杰,王俊豪,等. 考虑基质吸力的非饱和土邓肯-张统计损伤修正模型[J]. 水文地质工程地质,2022,49(1):84 − 91. [TAN Weijia,WEI Yunjie,WANG Junhao,et al. The Duncan-Chang statistical damage correction model of unsaturated soil considering matric suction[J]. Hydrogeology & Engineering Geology,2022,49(1):84 − 91. (in Chinese with English abstract)]
TAN Weijia, WEI Yunjie, WANG Junhao, et al. The Duncan-Chang statistical damage correction model of unsaturated soil considering matric suction[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 84 − 91. (in Chinese with English abstract)
|
[33] |
李杭州,廖红建,盛谦. 基于统一强度理论的软岩损伤统计本构模型研究[J]. 岩石力学与工程学报,2006,25(7):1331 − 1336. [LI Hangzhou,LIAO Hongjian,SHENG Qian. Study on statistical damage constitutive model of soft rock based on unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering,2006,25(7):1331 − 1336. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-6915.2006.07.006
LI Hangzhou, LIAO Hongjian, SHENG Qian. Study on statistical damage constitutive model of soft rock based on unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1331 − 1336. (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-6915.2006.07.006
|
[34] |
蒋维,邓建,李隐. 基于对数正态分布的岩石损伤本构模型研究[J]. 地下空间与工程学报,2010,6(6):1190 − 1194. [JIANG Wei,DENG Jian,LI Yin. Study on constitutive model of rock damage based on lognormal distribution[J]. Chinese Journal of Underground Space and Engineering,2010,6(6):1190 − 1194. (in Chinese with English abstract)]
JIANG Wei, DENG Jian, LI Yin. Study on constitutive model of rock damage based on lognormal distribution[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(6): 1190 − 1194. (in Chinese with English abstract)
|
[35] |
中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 5007—2011[S]. 北京:中国建筑工业出版社,2016. [Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for design of building foundation:GB 5007—2011[S]. Beijing:China Architecture & Building Press,2011. (in Chinese with English abstract)]
Ministry of Housing and Urban Rural Development of the People’s Republic of China. Code for design of building foundation: GB 5007—2011[S]. Beijing: China Architecture & Building Press, 2011. (in Chinese with English abstract)
|
1. |
南瑞川,柏晓鹏,张婷婷,闫晓惠. 镍污染场地抽出-处理数值模拟及渗透系数对修复效果影响. 大连理工大学学报. 2025(01): 97-104 .
![]() | |
2. |
胡博文,范琳琳,王磊,李振雄,王振华,解志旺,李毅. 基于GMS的平原区浅层地下水潜在硝酸盐点源污染预测研究——以秦皇岛为例. 北京师范大学学报(自然科学版). 2025(02): 151-160 .
![]() | |
3. |
董亚楠,王志文,商金华,徐东辉,何柱锟,黄晨曦,左锐. 地铁沿线壅水预测及地基安全风险分析研究. 北京师范大学学报(自然科学版). 2025(02): 141-150 .
![]() | |
4. |
陈帆,史浙明,贾永锋,臧永歌,廉新颖,姜永海,冉泽宇,尚长健. 场地污染地下水抽出处理系统井群加权优化方法研究. 水文地质工程地质. 2024(01): 201-214 .
![]() | |
5. |
付建利,路玉恒. 考虑降水入渗和径流的边坡稳定性分析. 水利科学与寒区工程. 2024(01): 23-26 .
![]() | |
6. |
殷乐宜,黄国鑫,牛浩博,陈坚,谢月清,杨丽虎,刘玲. 基于数值模拟和风险筛查的地下水污染动态风险评估. 环境工程. 2024(01): 199-205 .
![]() | |
7. |
刘国东,杜成鸿,侯杰,杨梦溪,陈宇,谢杨. 基于用高斯分布生成管道的岩溶地下水流数值模拟. 吉林大学学报(地球科学版). 2024(02): 592-603 .
![]() | |
8. |
黄明,马飞虎,匡武,孙亚敏. 基于MIKE21研究生态补水对巢湖水质时空分布的影响. 环境污染与防治. 2024(04): 463-470+477 .
![]() | |
9. |
龚良成. 污染场地环境岩土工程地质勘察中水文地质条件评估方法研究. 环境科学与管理. 2024(05): 186-190 .
![]() | |
10. |
李哲,王力娜. 不同水文地质条件对城市地下水资源污染的影响研究. 环境科学与管理. 2024(06): 120-124 .
![]() | |
11. |
周全超,刘玲,李继升,殷裁云. 基于多种解析法和数值法求解巨厚砂岩水文地质参数. 煤炭科学技术. 2024(S1): 174-182 .
![]() | |
12. |
徐蓓艺,王策,周光扬,周鹏鹏. 地下水污染风险评价研究现状与展望. 煤田地质与勘探. 2024(11): 55-71 .
![]() | |
13. |
刘洁,鞠天宇,邓圣,肖瀚,韩旭,徐祥健,姜永海,杨昱. 基于大型地下水试验装置的复合有机污染物迁移性能关键影响参数研究. 环境化学. 2024(11): 3688-3697 .
![]() | |
14. |
郝蓉. 基于三维地下水流数值模拟模型的水资源评价方法研究. 水利科技与经济. 2024(12): 93-97 .
![]() | |
15. |
石晓龙,孙昊,闫淼. FEFLOW在广州大坦沙地下水数值模拟中的应用. 地下水. 2024(06): 14-17 .
![]() | |
16. |
刘玲,魏亚强,陈坚,李璐,牛浩博,殷乐宜. 动网格在非饱和饱和界面数值模拟中的应用研究进展. 地质科技通报. 2023(01): 360-368+377 .
![]() | |
17. |
司明睿,卢阳阳,韩爽,席普宇,荣泽明,谢晴,蔡喜运. 地下含水层中过硫酸盐运移数值模拟及其影响半径综合模型研究. 环境科学研究. 2023(01): 208-222 .
![]() | |
18. |
潘茜雯,胡韬,孙洪广. 化工厂地土壤重金属迁移模拟. 科学技术与工程. 2023(04): 1781-1788 .
![]() | |
19. |
陈梦迪,姜振蛟,霍晨琛. 考虑矿层渗透系数非均质性和不确定性的砂岩型铀矿地浸采铀过程随机模拟与分析. 水文地质工程地质. 2023(02): 63-72 .
![]() | |
20. |
张行洲,殷乐宜,陈坚,周笑笑,杨丽虎,吴吉春,谢月清. 考虑污染物扩散风险的场地地下水污染多层次风险评估方法. 水文地质工程地质. 2023(02): 160-170 .
![]() | |
21. |
盖燕如,于莉,田亚男,冯在香,谭秀翠. 基于SWAT模型的济南市地下水资源评价. 山东农业大学学报(自然科学版). 2023(02): 285-291 .
![]() | |
22. |
左涛,熊小锋,戴柳珍. 数值模拟在地下水环境影响评价中的应用——以福泉市某尾矿库建设为例. 地下水. 2023(03): 1-3+12 .
![]() | |
23. |
冯运鱼,孙晓栋,吴佳美. 选煤厂事故池中污染物在地下水中的迁移规律研究. 选煤技术. 2023(02): 37-41 .
![]() | |
24. |
黄艳采,张忠俊,向刚,陆雄轩,王嘉铭,黄卫星. 污染场地地下水“三氮”空间分布研究. 环境工程. 2023(S2): 203-205+208 .
![]() | |
25. |
李景. 福建省沿海地区地下水与土壤环境质量协同监测研究——以东山县康美村地下水环境质量监测点为例. 福建轻纺. 2023(11): 30-33 .
![]() | |
26. |
李韦钰,邓一荣,刘丽丽,王俊,向萍,马娇阳. 基于GMS的典型工业场地污染调查方式优化研究. 环境生态学. 2023(11): 101-106 .
![]() | |
27. |
王鑫,潘明浩,李虎,左锐,徐东辉,何柱锟,武子一,徐云翔. 地铁沿线地下水壅高规律及其对极端降雨事件的响应. 科学技术与工程. 2023(32): 13718-13727 .
![]() | |
28. |
李大猛,孙东,余辉,李松,张正鹏. 绿色矿山建设与矿山生态修复关联探析. 世界有色金属. 2023(22): 162-165 .
![]() | |
29. |
王文升,张亚飞,杜丰丰,韩冬,倪小明. 寿阳地区15号煤层地下水动力场特征及控气作用. 油气藏评价与开发. 2022(04): 643-650 .
![]() | |
30. |
廉宁霞,刘星佳. 基于固化稳定化技术的制革厂废水铬污染治理研究. 环境科学与管理. 2022(10): 104-108 .
![]() | |
31. |
罗家松,尹呼和,徐彤,田雪沁,王新雷. 基于仿真模拟的空气源热泵电采暖经济技术分析. 电力需求侧管理. 2022(06): 19-24 .
![]() |