ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
WANGXian-guo~(, . A study of purification capacity of vadose zone on pollutants from infiltration water in the Luohe alluvial plain[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 123-126.
Citation: WANGXian-guo~(, . A study of purification capacity of vadose zone on pollutants from infiltration water in the Luohe alluvial plain[J]. Hydrogeology & Engineering Geology, 2009, 36(6): 123-126.

A study of purification capacity of vadose zone on pollutants from infiltration water in the Luohe alluvial plain

More Information
  • Vadose zone is the main channel of groundwater recharge and pollution. The nature of the vadose zone directly controls the velocity and extent of groundwater pollution.In this paper,lithology(mostly sand and gravel) and the vadose zone of the Luohe bed near Luoyang are examined.The Luohe bed is composed of sub-clay,sub-sand,medium fine sand and other media.The self-purification ability of pollutants of the river bed and the vadose zone is analyzed.The natural self-purification mechanism is briefly analyzed.The results show that the self-purification ability of pollutants of the Luohe bed is as high as 90%(except NO-3).Sub-clay,sub-sand,medium fine sand and other dielectric layer of vadose zone have a strong capacity to purify heavy metal(Cu2+),but is weak to clean Cl-and Cr6+,because the media can reach saturation state and lose the capacity purification in a short time.Under the similar environmental conditions and the same basic hydrogeological conditions,the thickness of vadose zone has a negative correlation to groundwater pollution.Through the vadose zone can effectively remove the harmful substances in waste water and prevent groundwater pollution.
  • Related Articles

    [1]CUI Haohao, ZHANG Guanghui, LIU Pengfei, WANG Jinzhe, TIAN Yanliang, WANG Qian. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. DOI: 10.16030/j.cnki.issn.1000-3665.202202055
    [2]MA Chunlong, SHI Xiaoqing, XU Weiwei, REN Jinghua, WANG Pei, WU Jichun. Correlation analysis of multiple monitoring indicators of contaminated site based on self-organizing map[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 191-202. DOI: 10.16030/j.cnki.issn.1000-3665.202008001
    [3]GUO Wei, YUAN Fang, ZHANG Jia, XIE Bin, FENG Xueyang, CHEN Honghan. In-situ Fenton oxidation experiment of compound benzene pollutants in high salt and strong acid groundwater[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 182-189. DOI: 10.16030/j.cnki.issn.1000-3665.202012021
    [4]ZHANG Jinde, TIAN Lei, PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 157-163. DOI: 10.16030/j.cnki.issn.1000-3665.202003031
    [5]ZHANG Xueyi, DOU Zhi. Influence of microscopic pore structure of clay on soluble contaminant transport[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 157-164. DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.23
    [6]JIANGGuanghui, . Spatial variability of multi-tracers in groundwater contamination sites[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 137-143.
    [7]ZHOULiang. In situ experiment of the pollution resistance of vadose zone in the blown-sand region in northern Shaanxi of China[J]. Hydrogeology & Engineering Geology, 2012, 39(6): 103-107.
    [8]XUChao, . Adsorption ability of geosynthetic clay liner to cations and organics in landfill leachate[J]. Hydrogeology & Engineering Geology, 2011, 38(3): 77-81.
    [9]ZHOUNian-qing, . A study of the pollutant migration in unsaturated sand by CT scanning[J]. Hydrogeology & Engineering Geology, 2010, 37(6): 97-101.
    [10]LIDing-long, . Characteristics and formation of organic pollutants in shallow groundwater in the Xuyi area of the Huaihe River Basin[J]. Hydrogeology & Engineering Geology, 2009, 36(5): 125-128.
  • Cited by

    Periodical cited type(15)

    1. 杨晓华,王东清,袁帅,张毅. 基于均匀化理论与上限分析的膨胀土滑坡稳定性分析. 水文地质工程地质. 2024(02): 172-182 . 本站查看
    2. 毛永强,李琴琴,戴明杰,崔德山,章广成. 复合型滑坡变形影响因素与深层排水效果研究. 路基工程. 2024(02): 9-20 .
    3. 王佳文,蔡鸿宇. 基于离散元法的降雨诱发土质边坡滑坡模型. 内蒙古煤炭经济. 2024(17): 181-183 .
    4. 孙天慈,陈雯兰,孙凯凯,莫志芳. 太湖环湖大堤长兴段堤防降雨入渗分析. 浙江水利水电学院学报. 2024(05): 67-73 .
    5. 雷伟,陈聪. 贵州松桃响水洞1号滑坡变形破坏特征研究. 西部探矿工程. 2023(07): 21-22+25 .
    6. 刘东泽,江俊杰. 库水位涨落耦合降雨条件下的滑坡稳定性分析. 萍乡学院学报. 2023(06): 12-16 .
    7. 李晋鹏,汪磊,王俊,陈洋,徐永福. 考虑抗剪强度衰减特性的膨胀土边坡稳定性分析. 中国地质灾害与防治学报. 2022(06): 29-36 .
    8. 饶鸿,王金淑,赵志明,吴光,冯涛. 基于有限元软件自定义本构模型的膨胀土边坡降雨入渗分析. 水文地质工程地质. 2021(01): 154-162 . 本站查看
    9. 童欣,方燃,李虹. 降雨对滑坡的稳定性影响及排水措施建议. 岩土工程技术. 2021(01): 52-55+59 .
    10. 荣光旭,彭艳,田凯. 基于Python的ABAQUS有限元强度折减法程序在边坡稳定性分析中的应用. 中北大学学报(自然科学版). 2021(04): 332-339 .
    11. 罗浩,霍宇翔,巨能攀,赖若帆,解明礼,段亮. 弃渣场边坡的粒径分布特征及其失稳机制研究. 水文地质工程地质. 2020(01): 69-79 . 本站查看
    12. 岳冲,赵静,牛安福,吉平,李晓帆,苏琴,杨凡. 基于有限元方法的冕宁跨断层水准大幅变化机理. 地震研究. 2020(04): 666-673+767 .
    13. 陈子玉,宋彦辉,严豪,陈康达. 双参数强度折减法研究中存在的问题分析. 水文地质工程地质. 2019(02): 125-132 . 本站查看
    14. 杨文浩,邵琪,张铮,沈建霞,王东英,王飞. 降雨工况下引航道护坡渗流影响数值分析. 水科学与工程技术. 2019(06): 25-29 .
    15. 田佳,韩磊,金学娟,许玲玲,王晓燕,董亚宁. 用有限元法研究降雨对青海云杉林边坡稳定性的影响. 中国水土保持科学. 2019(06): 11-18 .

    Other cited types(14)

Catalog

    Article views (1383) PDF downloads (450) Cited by(29)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return