ISSN 1000-3665 CN 11-2202/P
    NIERusong, . An analysis of the distance between surcharge load and existing bridged pile foundation in soft clay[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 64-70.
    Citation: NIERusong, . An analysis of the distance between surcharge load and existing bridged pile foundation in soft clay[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 64-70.

    An analysis of the distance between surcharge load and existing bridged pile foundation in soft clay

    More Information
    • Received Date: June 07, 2016
    • Revised Date: August 03, 2016
    • The distance between surcharge load and existing bridged pile foundation is an important factor affecting the internal forces and displacements in piles. 3-D finite element models are set up to implore the behaviors of a pile foundation in a bridge of a high-speed railway line in China due to surcharge load. The calculated results are in good agreement with the field results. The distances between surcharge load and existing bridged pile foundation are varied to study the internal forces and horizontal displacements in piles. The results indicate that the larger the distance is, the smaller the internal forces and horizontal displacements in piles are. When the distance d is less than 4 times the depth of soft clay h, the horizontal displacements of pile groups decrease linearly quickly with an increase in d/h; while d is larger than 4 times h, the horizontal displacements of pile groups decrease slowly with an increase in d/h. The suitable distance between surcharge load and existing pile foundation is determined with the maximum permissible displacement of the upper structures under normal operating conditions.
    • [1]
      [1]Springman S M, C W W Ng, Ellis E A. Centrifuge and Analytical Studies of Full Height Bridge Abutment on Piled Foundation Subjected to Lateral Loading[R]. 1994, CUED/D-SOILS/TR278.
      [2]
      [2]Stewart D P. Lateral loading of piled bridge abutments due to embankment construction[D]. University of Western Australia, 1992.
      [3]
      [3]Bransby M F. Piled foundations adjacent to surcharge loads[D]. University of Cambridge, 1995.
      [4]
      [4]Ellis E A. Soil-structure interaction for full-height piled bridge abutments constructed on soft clay[D]. University of Cambridge, 1997.
      [5]
      [5]Jeong Sangseom, Seo Donghee, Lee Jinhyung, et al. Time-dependent behavior of pile groups by staged construction of an adjacent embankment on soft clay[J]. Can. Geotech. J., 2004, 41: 644-656.
      [6]
      [6]李仁平,陈云敏,陈仁朋. 软基中桥头路基对邻近桩基的影响分析[J]. 中国公路学报,2001, 14(3): 73-77.

      [LI R P, CHEN Y M, CHEN R P. Analysis of approach embankment effect for the piled pier of bridge constructed on soft clay[J]. China Journal of Highway and Transport, 2001, 14(3): 73-77.(in Chinese)]
      [7]
      [7]聂如松,冷伍明,律文田. 软基台后路基填土对桥台桩基侧向影响的试验研究[J]. 岩土工程学报,2005, 27(12): 1487-1490.

      [NIE R S, LENG W M, LYU W T. Experimental study on lateral influence of embankment construction on piles in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(12): 1487-1490. (in Chinese)]
      [8]
      [8]律文田,冷伍明,王永和. 软土地区桥台桩基负摩擦力试验研究[J]. 岩土工程学报,2005, 27(6): 642-645.

      [LYU W T, LENG W M, WANG Y H. In-situ tests on negative friction resistance of abutment piles in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 642-645. (in Chinese)]
      [9]
      [9]Broms B B, Pandey P C, Goh A T C. The lateral displacement of piles from embankment loads[C]//Proc., Japan Soc. of Civ. Engrs., Tokyo, Japan, 1987, 338/III- 8(12): 1-11.
      [10]
      [10]Stewart D P, Jewell R J, Randolph M F. Numerical modelling of piled bridge abutments on soft clay[J]. Comp. and Geotech., London, England, 1993, 15: 21-46.
      [11]
      [11]Bransby M F, Springman S M. 3-D Finite element modelling of pile groups adjacent to surcharge loads[J]. Computers and Geotechnics, 1996, 19(4): 301-324.
      [12]
      [12]Ellis E A, Springman S M. Modeling of soil-structure interaction for a piled bridge abutment in plane strain FEM analyses[J]. Computers and Geotechnics, 2001, 28: 79-98.
      [13]
      [13]Takashi Hara, Yu Yuzhen, Keizo Ugai. Behaviour of pile bridge abutments on soft ground: A design method proposal based on 2D elastio-plastic-consolidation coupled FEM[J]. Computers and Geotechnics, 2004, 31: 339-355.
      [14]
      [14]聂如松,冷伍明,杨奇,等. 路基填土对桥台桩基影响的试验和数值仿真分析[J].岩土力学,2009,30(9):2862-2868.

      [NIE R S, LENG W M, YANG Q, et al. Field test and 3D FEM studies of bridge abutment on piled foundation subjected to embankment load[J]. Rock and Soil Mechanics, 2009,30(9):2862-2868. (in Chinese)]
      [15]
      [15]聂如松,冷伍明,杨奇,等. 低承台桥台桩基侧向受力性状试验与数值分析[J] 中南大学学报(自然科学版),2012,43(5):1877-1884.

      [NIE R S, LENG W M, YANG Q, et al. Field test and numerical analysis on behaviors of low-cap pile foundation supporting bridged abutment subjected to embankment load.[J] Journal of Central South University(Science and Technology), 2012, 43(5):1877-1884. (in Chinese)]
      [16]
      [16]聂如松,冷伍明,杨奇. 不同软土厚度下路基填土对单桩的影响研究[J] 湖南大学学报(自然科学版),2008,35(11):119-123.

      [NIE R S, LENG W M, YANG Q. Single Pile Subjected to Embankment Filling under different Clay Depth[J] Journal of Hunan University (Natural Sciences), 2008,35(11):119-123. (in Chinese)]
      [17]
      [17]聂如松,冷伍明,邓宗伟,等. 被动方桩土拱效应三维有限元分析[J]. 工业建筑,2007, 37(7): 47-52.

      [NIE R S, LENG W M, DENG Z W, et al. 3D finite element research on soil arching effect between the passive square piles[J]. Industrial Construction, 2007, 37(7): 47-52. (in Chinese)]
      [18]
      [18]魏丽敏,刘御刚,冯胜洋. 抽降水引起的桥梁桩基沉降计算[J].水文地质工程地质,2014,41(2):44-49.

      [WEI L M, LIU Y G, FENG S Y. Settlement calculation of bridge pile foundation caused by dewatering[J].Hydrogeology & Engineering Geology, 2014,41(2):44-49. (in Chinese)]
      [19]
      [19]Heyman L, Boersma L. Bending moments in piles due to lateral earth pressure[C]//Proc. of 5th ICSMFE, Pairs, 1961, 2: 424-429.
      [20]
      [20]Stewart D P. Jewell R J, Randolph M F. Design ofpiled abridge abutments on soft clay for loading from lateral soil movements [J]. Geotechnique, 1994,44(2):277-296.
    • Related Articles

      [1]CHEN Peipei, SHANG Zhi, WANG Manqi, QI Linghao, YANG Guangchang, WU Nan. Analysis of hydrothermal coupling response characteristics of frozen soil subgrade of high-speed railway in cold region[J]. Hydrogeology & Engineering Geology, 2025, 52(3): 153-162. DOI: 10.16030/j.cnki.issn.1000-3665.202404048
      [2]HE Xiao, WANG Weizhi, XU Yongfu, WANG Hu, YANG Yuanzhi, YANG Weilin, AO Jiangzhong, XIAN Yi, NI Shuntian, YE Huayang. Comparison analysis of the impact of soft ground improvement construction on existing railways near newly constructed lines[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 111-122. DOI: 10.16030/j.cnki.issn.1000-3665.202211054
      [3]SONG Yulan, YANG Lizhong. Ground vibration test of the Zhengzhou-Xi’an high-speed railway and analyses of the vibration isolation trench effect[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 132-143. DOI: 10.16030/j.cnki.issn.1000-3665.202205041
      [4]HE Kun, HU Xiewen, LIU Bo, ZHOU Ruichen, XI Chuanjie, HAN Mei, ZHANG Xiaoyu. Characteristics and potential engineering perniciousness of the debris flow group in one station of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 137-149. DOI: 10.16030/j.cnki.issn.1000-3665.202103093
      [5]ZHOU Hongfu, FENG Zhiguo, SHI Shengwei, WANG Baodi, XU Ruge, RAN tao. Slope engineering geology characteristics and stability evaluation of a grand bridge to Chengdu bank on the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 112-119. DOI: 10.16030/j.cnki.issn.1000-3665.202103076
      [6]XU Mo, JIANG Liangwen, LI Xiao, QI Jihong, ZHANG Qiang, LI Xiao. Major engineering hydrogeological problems along the Ya’an-Linzhi section of the Sichuan-Tibet Railway[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 13-22. DOI: 10.16030/j.cnki.issn.1000-3665.202103101
      [7]HUANG Haining, JU Nengpan, HUANG Jian, ZHANG Chengqiang. Caving failure characteristic of slope rockfall on Yiwan section of the Zhengzhou-Wanzhou high-speed railway[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 164-172. DOI: 10.16030/j.cnki.issn.1000-3665.201906053
      [8]WANGXiao-jun, . Numerical simulation analyses of artificial upper table and residual thawed layer for embankment of Qinghai-Tibet Railway in the permafrost region[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 50-56.
      [9]LIGuo-he, . A discussion of the correlation between land subsidence and groundwater level variation along the Jinghu high speed railway[J]. Hydrogeology & Engineering Geology, 2008, 35(6): 90-94.
      [10]WANGJia-ding, . Dynamic numerical simulation for slip deformation of loess foundation of highspeed railway[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 19-23.
    • Cited by

      Periodical cited type(20)

      1. 李洪冉,曹红桥. 弃土堆载的位置对邻近桩柱式桥墩受力影响分析. 城市建筑. 2025(04): 192-195 .
      2. 孙卫勇,符征宇,吴淞全,林皓鋆,李晓. 侧向堆载条件下灌注桩受力特性数值研究. 福建建材. 2025(01): 71-75 .
      3. 杨吉新,陶金,苗振国. 堆载作用下摩擦型桩负摩阻力研究. 工程与建设. 2025(01): 85-88 .
      4. 陈灵忠. 围垦作业范围对邻近桥梁桩基受力变形特性的影响研究. 西部交通科技. 2025(01): 104-106+217 .
      5. 周平. 软土地区铁路桥梁桥下堆载安全敏感性分析. 世界桥梁. 2023(02): 97-103 .
      6. 闵建刚,顾红林,杜鹏,徐磊,吴顺远,宁月湖. 岩溶区桩体单侧堆载效应数值模拟分析. 中外公路. 2023(06): 27-32 .
      7. 林刚,李运胜,赵毅. 堆土对既有高速公路桥梁桩基稳定性影响分析. 山西建筑. 2022(05): 117-122 .
      8. 傅栋梁,王雅甜,蔡晓鹏. 路基堆载对邻近桥梁结构的影响及对策. 市政技术. 2022(05): 29-34 .
      9. 宋旭明,王天良,唐冕,许珈豪. 堆载作用下高铁桥梁轨道形位变化的可靠度研究. 中南大学学报(自然科学版). 2022(05): 1700-1710 .
      10. 林刚,赵毅,倪鹏. 堆土对现有高架桥桩基稳定性的影响分析. 浙江建筑. 2022(04): 34-38 .
      11. 张恒,廖鸿钧. 软土地区大面积堆载作用下邻近桥梁墩柱偏位分析研究. 广东土木与建筑. 2022(11): 77-80 .
      12. 王东. 邻近加载下桩网结构路基离心模型试验研究. 路基工程. 2021(04): 83-88 .
      13. 丁志文,马斌,张艺瀚,车东霖,王加俊. 南昌二元地层便道荷载对邻近桥梁桩基的影响. 华东交通大学学报. 2021(05): 30-39 .
      14. 王旭东,郝宪武,费鹏波,赵宝俊. 堆载对黄土陡坡地区群桩基础力学特性的影响. 公路. 2020(01): 69-74 .
      15. 王崇淦,蒋志琳,朱禹,陈晓斌. 大面积堆土荷载对既有高铁桥梁桩基承载性能影响分析. 铁道科学与工程学报. 2020(05): 1090-1096 .
      16. 赵伟封,文军强,冯凯,王蒙蒙,贾明晖. 带状堆载对邻近桩基作用效应的计算方法. 长安大学学报(自然科学版). 2019(02): 100-107+116 .
      17. 张万鹏,郝成英,陈林. 某桥墩防护结构在堆载作用下的受力安全分析. 中外公路. 2019(03): 107-111 .
      18. 潘晓东,应添添,范立盛,彭卫兵,张勇. 桥侧大面积堆土致斜交梁桥倒塌事故分析. 中国公路学报. 2019(08): 114-124 .
      19. 李清泉,程晓伟,肖洋. 微型桩结合灰土桩在黄土地区纠倾加固工程中的应用. 水文地质工程地质. 2018(03): 106-110 . 本站查看
      20. 王军,马学宁. 堆载作用下桩基受力特性分析. 铁道建筑. 2018(09): 72-75 .

      Other cited types(8)

    Catalog

      Article views (1158) PDF downloads (744) Cited by(28)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return