ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
XIEWanli, . A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 82-89.
Citation: XIEWanli, . A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 82-89.

A study of macro mechanical response and microstructure characteristics of loess under irrigation mechanism

More Information
  • Received Date: October 07, 2016
  • Revised Date: January 10, 2017
  • Based on the properties of water sensitivity and microstructure of loess, the present study investigates the variation laws of macro mechanical response and microstructure of loess during the process of water infiltration. Tests of the macro mechanics and microstructure of loess with different amount of water content are conducted to explore the stress & strain response laws of the loess affected by water as well as the microstructure change of loess on the shearing surface. The results indicate that the stress-strain curve of the loess Q3 in the study area transforms from strain softening to strain hardening with the increase in confining pressure but it transforms from strain hardening to strain softening with the increase in water content. As a result, this study concludes that the corresponding strain value of the studied loess structure yield Sigma K(σk) is generally less than 2%. Additionally, steady state parameters and boundary surface parameters are obtained from the tri-axial undrained consolidation shear test of the saturated loess Q3. Meanwhile, the approximate pro interface formula is obtained with the hypothesis of stable convergence state under different confining pressures. Failure modes of the loess Q3 under different degree of confining pressures and different amount of moisture content are analyzed and it is found that the change in the microstructure of loess samples before and after being sheared is characterized by transformation of microstructure, pore content decrease and micro fracture development.
  • [1]
    [1]范立民,岳明,冉广庆. 泾河南岸崩岸型滑坡的发育规律[J]. 中国煤田地质, 2004, 16(5):33-35.

    [FAN L M, YUE M, RAN G Q. Development pattern of slumping bank type landslide at the south bank of Jinghe, Shaanxi Province[J].Coal Geology of China, 2004, 16(5):33-35.(in Chinese)]
    [2]
    [2]雷祥义. 陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J]. 工程地质学报, 1995, 3(1):56-64.

    [LEI X Y. The hazards of loess landslides in the southern tableland of Jingyang county, Shaanxi and their relationship with the channel water into fields[J].Journal of Engineering Geology, 1995, 3(1):56-64. (in Chinese)]
    [3]
    [3]Ma D, Zhao S, Li H.由灌溉引起的阶地边缘黄土滑坡[J]. 曾康,译.四川水利, 1998,19(4):63-64.

    [Ma D, Zhao S, Li H. The loess landslides caused by irrigation terrace edge[J]. ZENG K, trans. Sichuan Water Resources, 1998,19(4):63-64. (in Chinese)]
    [4]
    [4]王家鼎, 惠泱河. 黄土地区灌溉水诱发滑坡群的研究[J]. 地理科学, 2002, 22(3):305-310.

    [WANG J D, HUI Y H. Scientia Geographica Sinica Landslides in Crows Induced by Irrigated[J]. Water in Loess Area, 2002, 22(3):305-310. (in Chinese)]
    [5]
    [5]王志荣, 吴玮江, 周自强. 甘肃黄土台塬区农业过量灌溉引起的滑坡灾害[J].中国地质灾害与防治学报, 2004, 15(3):43-54.

    [WANG Z R, WU W J, ZHOU Z Q. Landslide induced by over-irrigation in loess platform areas in Gansu Province[J].The Chinese Journal of Geological Hazard and Control, 2004, 15(3):43-54. (in Chinese)]
    [6]
    [6]朱立峰, 胡炜, 贾俊,等. 甘肃永靖黑方台地区灌溉诱发型滑坡发育特征及力学机制[J].地质通报, 2013,32(6):840-846.

    [ZHU L F, HU W, JIA J, et al. The development characteristics and mechanics of irrigation induced landslide in Heifangtai, Yongjing, Gansu Province[J]. Geological Bulletin of China, 2013,32(6):840-846. (in Chinese)]
    [7]
    [7]许领, 戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J]. 水文地质工程地质, 2008,35(5):28-32.

    [XU L, DAI F C. Statistical analysis of the characteristic parameters of loess landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008,35(5):28-32. (in Chinese)]
    [8]
    [8]董英, 贾俊, 张茂省,等. 甘肃永靖黑方台地区灌溉诱发作用与黄土滑坡响应[J].地质通报,2013,32(6):893-898.

    [DONG Y, JIA J, ZHANG M S,et al. Irrigation induced effect and the loess landslide response in Heifangtai, Yongjing, Gansu Province[J]. Geological Bulletin of China, 2013,32(6):893-898. (in Chinese)]
    [9]
    [9]何小亮, 谢婉丽, 丁勇,等. 泾阳南塬黄土剪切强度的三轴试验研究[J]. 工程地质学报, 2010,18(增刊1):76-80.

    [HE X L, XIE W L, DING Y, et al. The triaxial test research of The loess shear strength in southern Yuan Jingyang[J].Journal of Engineering Geology, 2010,18(Sup 1):76-80. (in Chinese)]
    [10]
    [10]高国瑞. 兰州黄土显微结构和湿陷机理的探讨[J]. 兰州大学学报, 1979(2): 123-134.

    [GAO G R. Study of the Microstructures and the collapse mechanism in loess soil from Lanzhou[J]. Journal of Lanzhou University, 1979(2): 123-134. (in Chinese)]
    [11]
    [11]谢婉丽,王延寿,马中豪,等.黄土湿陷机理研究现状及发展趋势[J]. 现代地质,2015,30(2):397-407.

    [XIE W L, WANG Y S, MA Z H, et al. Research status and prospect of loess collapsibility mechanism[J]. Geoscience,2015,30(2):397-407. (in Chinese)]
    [12]
    [12]Dudley J H. Review of collapsing soil[J]. Soil Mech & Found Div, ASCE, 1970, 96(SM3):925-939.
    [13]
    [13]Barden L. The collapse mechanism in partly saturated soil[J]. Eng Geol, 1973 (7): 49-60.
    [14]
    [14]Smalleya I J, Mavlyanova N G, Rakhmatullaev Kh L, et al. The formation of loess deposits in the Tashkent region and parts of Central Asia; and problems with irrigation, hydrocollapse and soil erosion[J]. Quaternary International, 2006 (152/153): 59-69.
    [15]
    [15]Dibben S C, Jefferson I F, Smalley I J. The “Loughborough loess” Monte Carlo model of soil structure[J]. Computers & Geosciences, 1998, 24 (4): 345-352.
    [16]
    [16]蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(1): 52-57.

    [PU Y B, CHEN W Y, LIAO Q R. Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 52-57. (in Chinese)]
    [17]
    [17]雷胜友, 唐文栋. 黄土在受力和湿陷过程中微结构变化的CT扫描分析[J]. 岩石力学与工程学报, 2004, 23(24): 4166-4169.

    [LEI Y S, TANG W D. Analysis of microstructure change for loess in the process of loading and collapse with CT scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4166-4169. (in Chinese)]
    [18]
    [18]陈正汉, 方祥位, 朱元青,等. 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30(1): 1-11.

    [CHEN Z H, FANG X W, ZHU Y Q, et al. Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30(1): 1-11. (in Chinese)]
    [19]
    [19]朱元青, 陈正汉. 原状Q3黄土在加载和湿陷过程中细观结构动态演化的CT—三轴试验研究[J]. 岩土工程学报, 2009,31 (8): 1219-1228.

    [ZHU Y Q, CHEN Z H. Experimental study on dynamic evolution of meso-structure of intact Q3 loess during loading and collapse using CT and triaxial apparatus[J]. Chinese Journal of Geotechnical Engineering, 2009,31 (8): 1219-1228. (in Chinese)]
    [20]
    [20]李加贵, 陈正汉, 黄雪峰,等. Q3黄土侧向卸荷时的细观结构演化及强度特性[J]. 岩土力学, 2010, 31(4): 1084-1091.

    [LI J G, CHEN Z H, HUANG X F, et al. Q3 loess of lateral unloading mesoscopic structure evolution and strength characteristics[J]. Rock and Soil Mechanics, 2010, 31(4): 1084-1091. (in Chinese)]
    [21]
    [21]Sladen J A, D Hollander R D, Krahn J. The liquefaction of sands, a collapse surface approach[J]. Canadian Geotechnical Journal, 1985, 22:564-578.
    [22]
    [22]Sasitharan S, Robertson P K, Sego D C, et al. Collapse behavior of sand[J]. Canadian Geotechnical Journal, 1993, 30:569-577.
  • Cited by

    Periodical cited type(12)

    1. 庞海松,谢骏锦,张小明,王官贺,张明. 基于RAMMS数值模拟的短时强降雨型泥石流危险性评价. 地质科技通报. 2024(02): 215-225 .
    2. 刘星宇,朱立峰,孙建伟,贾煦,刘向东,黄虹霖,程贤达,孙亚柯,胡超进,张晓龙. 沟谷型泥石流特征参数的等代面积递归精细求解. 西北地质. 2024(03): 272-284 .
    3. 蓝再成,胡卸文,曹希超,黄光林,白金钊,冯霄. 汉源县工业园区硝厂沟泥石流成灾机理及其堆积范围分析. 中国地质灾害与防治学报. 2024(03): 61-69 .
    4. 渠敬凯,杨为民,申俊峰,张春山,万飞鹏,马思琦,徐传成,唐海兵. 基于DEM数据预处理的小流域泥石流防治工程效果分析——以漳县方家沟泥石流为例. 水文地质工程地质. 2024(04): 206-219 . 本站查看
    5. 赵聪,梁京涛,铁永波,马晓波,张肃,龚凌枫. 西藏雅鲁藏布江峡谷特大巨型泥石流活动与泥沙输移特征研究. 中国地质灾害与防治学报. 2024(04): 45-55 .
    6. 黄国良. 帕隆藏布流域(波密—通麦段)冰川动态变化特征. 铁道标准设计. 2024(12): 14-20 .
    7. 刘兆旭,任锦程,赵艳青,苏鹏程,汪洋,龚旭. 泥石流透过型拦砂坝群结构优化设计. 山地学报. 2024(06): 791-804 .
    8. 陈兰,范宣梅,熊俊麟,王欣,窦向阳. 藏东南多依弄巴流域冰湖溃决危险性评价. 地质科技通报. 2023(02): 258-266 .
    9. 刘府生,周瑞宸,孙红林,胡卸文,黎尤,徐玉龙. 基于RAMMS的冰湖溃决型泥石流演进模拟及危害性. 科学技术与工程. 2023(33): 14123-14132 .
    10. 黄永芳,郭永刚,李峰,徐建宇,荆旭君. 中国高原地区灾害链研究的文献计量分析. 计量科学与技术. 2023(08): 3-15+53 .
    11. 赵永辉,王赟,李生才,朗杰曲珍. 西藏泥石流地质灾害及其生态环境效应. 水利规划与设计. 2022(01): 85-89 .
    12. 翟兆斌,胡卸文,刘波,席传杰. 汉源县范家沟泥石流拟设工程治理效果研究. 四川水力发电. 2022(05): 117-122 .

    Other cited types(9)

Catalog

    Article views (1487) PDF downloads (946) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return