ISSN 1000-3665 CN 11-2202/P
    HUANGHaifeng, . Nonlinear creep damage model of soft rock and its experimental study[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 49-54.
    Citation: HUANGHaifeng, . Nonlinear creep damage model of soft rock and its experimental study[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 49-54.

    Nonlinear creep damage model of soft rock and its experimental study

    More Information
    • Received Date: December 19, 2016
    • Revised Date: January 16, 2017
    • In order to reflect the whole process of soft rock creep, the red mudstone creep experiment is carried out. The experimental results show that the elastic modulus gradually decreases with the increasing time and the viscosity coefficient gradually increases with the increasing time under the constant stress before yield. Therefore, this paper argues that the processing method of creep damage in the traditional theoretical rheology is not applicable to the damage evolution of the viscous coefficient, and the fractional calculus is used to describe the viscoelastic and viscoplastic strain of soft rock creep. By constructing an elastic body based on time-dependent damage, which is in series with a viscous body and a viscoplastic body based on fractional calculus, a new nonlinear creep damage model is established. The creep test data of red mudstone, frozen soft rock and red sandstone are identified with the creep damage model of soft rock, and the rationality and applicability of the proposed model is shown.
    • [1]
      [1]孙钧. 岩土材料流变及其工程应用[M]. 北京: 中国建筑工业出版社, 1999.

      [SUN J. Rheology of geo-material and its engineering application[M]. Beijing: China Architecture and Building Press, 1999.(in Chinese)]
      [2]
      [2]刘正, 高文华, 刘栋,等. 深部围岩流变特性试验研究及其模型辨识[J]. 水文地质工程地质, 2012, 39(4):43-48.

      [LIU Z, GAO W H, LIU D, et al. An experimental study of the creep properties of deep surrounding rocks and creep model identification[J]. Hydrogeology & Engineering Geology, 2012, 39(4):43-48. (in Chinese)]
      [3]
      [3]李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(3):398-403.

      [LI D W, WANG R H, FAN J H. Nonlinear rheological model for frozen soft rock during Cretaceous period[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(3):398-403. (in Chinese)]
      [4]
      [4]Ping C, Wen Y, Wang Y, et al. Study on nonlinear damage creep constitutive model for high-stress soft rock[J]. Environmental Earth Sciences, 2016, 75(10):1-8.
      [5]
      [5]Günther R M, Salzer K, Popp T, et al. Steady-State Creep of Rock Salt: Improved Approaches for Lab Determination and Modelling[J]. Rock Mechanics and Rock Engineering, 2015, 48(6):2603-2613.
      [6]
      [6]Zhou K P, Bin L I, Jie-Lin L I, et al. Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4):1254-1261.
      [7]
      [7]Chan K S, Bodner S R, Fossum A F, et al. A Damage Mechanics Treatment of Creep Failure in Rock Salt[J]. International Journal of Damage Mechanics, 1997, 6(2):121-152.
      [8]
      [8]Chan K S, Bodner S R, Fossum A F, et al. Inelastic Flow Behavior of Argillaceous Salt[J]. International Journal of Damage Mechanics, 1996, 5(5):292-314.
      [9]
      [9]朱昌星, 阮怀宁, 朱珍德, 等. 岩石非线性蠕变损伤模型的研究[J]. 岩土工程学报, 2008, 30(10):1510-1513.

      [ZHU C X, RUAN H N, ZHU Z D, et al. Non-linear rheological damage model of rock[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10):1510-1513. (in Chinese)]
      [10]
      [10]赵延林, 唐劲舟, 付成成, 等. 岩石黏弹塑性应变分离的流变试验与蠕变损伤模型[J]. 岩石力学与工程学报, 2016, 35(7):1297-1308.

      [ZHAO Y L, TANG J Z, FU C C, et al. Rheological test of separation between viscoelastic-plastic strains and creep damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1297-1308. (in Chinese)]
      [11]
      [11]张强勇, 杨文东, 张建国, 等. 变参数蠕变损伤本构模型及其工程应用[J]. 岩石力学与工程学报, 2009, 28(4):732-739.

      [ZHANG Q Y, YANG W D, ZHANG J G, et al. Variable parameters-based creep damage constitutive model and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):732-739. (in Chinese)]
      [12]
      [12]宋勇军, 雷胜友, 刘向科. 基于硬化和损伤效应的岩石非线性蠕变模型[J]. 煤炭学报, 2012, 37(增刊2):287-292.

      [SONG Y J, LEI S Y, LIU X K. Non-linear rock creep model based on hardening and damage effect[J]. Journal of China Coal Society, 2012, 37(Sup 2):287-292. (in Chinese)]
      [13]
      [13]金磊, 夏才初. 理论流变力学模型中蠕变损伤的研究方法与问题[J]. 岩石力学与工程学报, 2012, 31(增刊1):3006-3014.

      [JIN L, XIA C C. Study methods for creep damage in theoretical rheological models and some problems[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Sup 1):3006-3014. (in Chinese)]
      [14]
      [14]范庆忠, 高延法, 崔希海, 等. 软岩非线性蠕变模型研究[J]. 岩土工程学报, 2007, 29(4):505-509.

      [FAN Q Z, GAO Y F, CUI X H, et al. Study on nonlinear creep model of soft rock[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(4):505-509. (in Chinese)]
      [15]
      [15]Adolfsson K, Enelund M, Olsson P. On the Fractional Order Model of Viscoelasticity[J]. Mechanics of Time-Dependent Materials, 2005, 9(1):15-34.
      [16]
      [16]Zhou H W, Wang C P, Han B B, et al. A creep constitutive model for salt rock based on fractional derivatives[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48(1):116-121.[17]Blair G W S. Analytical and Integrative Aspects of the Stress-Strain-Time Problem[J]. Journal of Scientific Instruments, 1944, 21(5):80-84.
      [17]
      [18]巨能攀, 黄海峰, 郑达, 等. 考虑含水率的红层泥岩蠕变特性及改进伯格斯模型[J]. 岩土力学,2016, 37(增刊2):67-74.

      [JU N P, HUANG H F, ZHENG D, et al. Improved Burgers model for creep characteristics of red bed mudstone considering water content[J]. Rock and Soil Mechanics, 2016, 37(Sup 2):67-74. (in Chinese)]
      [18]
      [19]毕港, 韦健飞, 黄梦昌,等. 土体蠕变的新模型[J]. 水文地质工程地质, 2016, 43(6):53-58.

      [BI G, WEI J F, HUANG M C, et al. A new model for soil creep[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 53-58. (in Chinese)]
      [19]
      [20]唐皓, 赵法锁, 段钊,等. 基于分数阶微积分改进的黄土西原模型[J]. 水文地质工程地质, 2014, 41(5):50-56.

      [TANG H, ZHAO F S, DUAN Z, et al. The improved Nishihara model of loess based on fractional calculus [J]. Hydrogeology & Engineering Geology, 2014, 41(5): 50-56. (in Chinese)]
      [20]
      [21]赵宝云, 刘东燕, 郑颖人,等. 红砂岩单轴压缩蠕变试验及模型研究[J]. 采矿与安全工程学报, 2013, 30(5):744-747.

      [ZHAO B Y, LIU D Y, ZHENG Y R, et al. Uniaxial compressive creep test of red sandstone and its constitutive model[J]. Journal of Mining & Safety Engineering, 2013, 30(5):744-747. (in Chinese)]
    • Related Articles

      [1]HE Xiao, HOU Shengshan, MENG Xiansen, CHEN Liang, LIU Mingxue, FENG Zhen, LI Ang, JI Feng, GUO Changbao. Creep characteristics and nonlinear creep damage model of Bocigou formation slate in Kangding-Xinduqiao section of West Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 107-116. DOI: 10.16030/j.cnki.issn.1000-3665.202209041
      [2]LI Anrun, DENG Hui, WANG Hongjuan, ZHENG Han, GOU Xiaofeng, PAN Yuanyang. Constitutive model of water-damaged silty mudstone under water-rock interactions[J]. Hydrogeology & Engineering Geology, 2021, 48(2): 106-113. DOI: 10.16030/j.cnki.issn.1000-3665.202004007
      [3]LIXiulei, . A study of the creep model of rock considering fractures and thermal damage[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 46-56. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.07
      [4]LAIWenjie, . Gray model with fractional order and its application to settlement prediction[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 124-124. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.17
      [5]LIChang, . Creep tests of red-bed sandstone after high temperature[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 71-71. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.10
      [6]JIANGShu, . A non-linear damage rheological constitutive model and its application to a giant slow-moving landslide[J]. Hydrogeology & Engineering Geology, 2019, 46(1): 56-56. DOI: 10.16030/j.cnki.issn.1000-3665.2019.01.08
      [7]CAOWengui, . A statistical damage constitutive model of rocks considering the variation of the elastic modulus[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 42-48.
      [8]TANGHao, . Creep model of rock based on piecewise simulation[J]. Hydrogeology & Engineering Geology, 2017, 44(1): 41-47.
      [10]HELi-jun, . Creep properties and empirical model of soft clay in Zhanjiang[J]. Hydrogeology & Engineering Geology, 2011, 38(1): 59-64.
    • Cited by

      Periodical cited type(18)

      1. 唐飞. 基于博弈论综合评价云模型的露天矿边坡岩体稳定性分析. 有色金属(矿山部分). 2024(02): 93-101 .
      2. 柴乃杰,周文梁. 基于优化组合权-模糊可变集的坝基岩体质量分级. 吉林大学学报(地球科学版). 2023(02): 514-525 .
      3. 吴占廷. 马氏距离判别法对边坡潜在破坏类型分析——以某石灰石矿山为例. 贵州地质. 2023(01): 43-48 .
      4. 许胜军,余华中,李德海,余永强. 基于博弈论—云模型的露天矿边坡稳定性分析. 能源与环保. 2023(07): 21-28 .
      5. 马留柱. 基于组合赋权的有限区间云模型底板突水风险性评价. 中国煤炭地质. 2023(07): 68-73 .
      6. 徐博,谢慈航,吴莹. 隧道围岩分级方法研究综述. 隧道建设(中英文). 2023(S1): 25-36 .
      7. 朱文举,平建华,侯俊山,宁艺武,耿文斌. 安阳市地下水源热泵系统建设水资源管理区划研究. 水文地质工程地质. 2022(01): 200-208 . 本站查看
      8. 杨子桐,黄显峰,方国华,叶健,陆承璇. 基于改进云模型的南水北调东线工程效益评价. 水利水电科技进展. 2021(04): 60-66+80 .
      9. 刘方亮. 引水隧道最佳支护系统工程数值建模分析. 水利技术监督. 2021(10): 133-137+203 .
      10. 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型. 黄金科学技术. 2021(06): 826-833 .
      11. 卢宇明. 区间数型隧道围岩综合分级云优化理论模型. 科学技术与工程. 2020(09): 3763-3769 .
      12. 曹建立,韩智勇,任凤玉,谭宝会. 基于指标关联性的岩体质量分级集对云算法及其应用. 中国矿业. 2020(11): 190-197 .
      13. 董译萱,周洪文. 基于博弈论-有限云模型的尾矿库溃坝风险评价. 水电能源科学. 2020(12): 75-78+168 .
      14. 王加闯,黄明健,过江. 基于CRITIC-有限区间云模型的边坡稳定性评价. 中国安全生产科学技术. 2019(06): 113-119 .
      15. 张润来,罗周全. 基于组合赋权与有限区间云模型的巷道冒顶预测研究. 矿冶工程. 2019(04): 11-14+19 .
      16. 周坦,胡建华,匡也. 基于模糊RES-多维云模型的岩体质量评判方法与应用. 中国有色金属学报. 2019(08): 1771-1780 .
      17. 崔涛,郑淑芬. 基于组合赋权-改进云模型的边坡稳定性评价方法. 中外公路. 2019(05): 33-38 .
      18. 李元松,高晖,陈峰,王亚军,闫海涛,王章琼,肖尊群. 乌尉高速公路边坡稳定性综合评价. 水文地质工程地质. 2018(04): 150-156 . 本站查看

      Other cited types(5)

    Catalog

      Article views (1305) PDF downloads (1185) Cited by(23)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return