ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
LIUZhikui, . Effect of the fly ash and lime fly ash on the mechanical properties of red clay in Guilin[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 86-92.
Citation: LIUZhikui, . Effect of the fly ash and lime fly ash on the mechanical properties of red clay in Guilin[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 86-92.

Effect of the fly ash and lime fly ash on the mechanical properties of red clay in Guilin

More Information
  • Received Date: September 09, 2016
  • Revised Date: November 17, 2016
  • To examine the improvement effect the content and curing time of fly ash and lime fly ash on the red clay in Guilin, the direct shear tests, oedometer tests and Scanning Electron Microscope tests are conducted. The mixture of fly ash can improve the shear strength of the red clay. After over a certain amount (18% fly ash content), the cohesion of the red clay reduces. With the prolonging of the curing time, the shear strength of the red clay with different content of fly ash increases first and then increases slowly, The shear strength of lime-fly ash red clay improves rapidly in the early stage, and increases intensely with the prolonging of the curing time. The cohesive strength of the lime-fly ash red clay increases first and then decreases with the increasing lime-fly ash content. The modulus of compressibility of the red clay increases with the mixing of fly ash and lime fly ash and increases gradually with the prolonging of the curing time. With the addition of fly ash and lime, a series of physical and chemical reactions occur in the red clay. Analysis of the micro-structure show that the pores in the soil decreases, and the structure is better than the that of the plain red-clay.
  • [1]
    [1]何毅东. 关于红粘土的若干问题研究[D].南宁:广西大学,2007.

    [HE Y D. Several study on Red Clay[D]. Nanning: Guangxi University,2007.(in Chinese)]
    [2]
    [2]王清,陈剑平,马丽英. 中国红土的研究与地基承载力的评价[J].探矿工程(岩土钻掘工程),1995(4):15-17.

    [WANG Q, CHEN J P, MA L Y. Study on China Red Soil and Evaluation on Foundation Bearing Capacity[J]. Exploration Engineering (Rock and Soil Drilling and Excavation Engineering), 1995(4):15-17. (in Chinese)]
    [3]
    [3]姜洪涛. 红粘土的成因及其对工程性质的影响[J].水文地质工程地质,2000,27(3):33-37.

    [JIANG H T. The origin and the influence of engineering properties on red clay [J]. Hydrogeology & Engineering Geology, 2000,27(3):33-37. (in Chinese)]
    [4]
    [4]Gidigaso M D.Mode of formation and geotechnical of literate materials of ghananin relation to soil forming factors[J].Eng Geol,1997(6):10-17.
    [5]
    [5]韦复才. 桂林红粘土的物质组成及其工程地质性质特征[J].江西师范大学学报(自然科学版),2005,29(9):460-464.

    [WEI F C. Material Compositions and Engineering Geological Properties of Guilin Red Soil[J]. Journal of Jiangxi Normal University (Natural Science), 2005,29(9):460-464. (in Chinese)]
    [6]
    [6]徐榴胜. 红粘土在环境工程地质中的隐患[J].水文地质工程地质,1995,22(5):40-43.

    [XU L S. Environmental engineering geological hazards of red clay[J]. Hydrogeology & Engineering Geology, 1995,22(5):40-43. (in Chinese)]
    [7]
    [7]刘莉,杨尽,苏小丽. 粉煤灰在土壤改良中的机理研究[J].安徽农业科学,2010,38(31):17512-17513.

    [LIU L, YANG J, SU X L. Mechanism research of Fly Ash in soil improvement[J]. Journal of Anhui Agriculture Scientific, 2010,38(31):17512-17513. (in Chinese)]
    [8]
    [8]罗斌,赵雄. 碎石改良高液限红粘土的试验研究[J].公路工程,2009,34(2):131-134.

    [LUO B, ZHAO X. Test Study on Improving High Liquid Limit Red Clay with Crushed Stone[J]. Highway Engineering,2009,34(2):131-134. (in Chinese)]
    [9]
    [9]孙冀. 砂砾改良高液限红粘土的试验研究[J].中国西部科技,2008,7(23):22-24.

    [SUN J. Test Study on Improving High Liquid Limit Red Clay with Gravel[J]. Science and Technology in West of China,2008,7(23):22-24. (in Chinese)]
    [10]
    [10]周静静. 红粘土的改性及其机理研究[D].重庆:重庆大学,2014.

    [ZHOU J J. Modification and Modification Mechanism of Red Clay [D]. Chongqing: Chongqing University, 2014. (in Chinese)]
    [11]
    [11]施灿海,李猛,王绍强,等. 改良云南红粘土强度特性研究[J].科学技术与工程,2011,11(9):2137-2140.

    [SHI C H, LI M, WANG S Q, et al. Improved Strength Characteristics of Yunnan Red Clay[J]. Science Technology and Engineering, 2011,11(9):2137-2140.
    [12]
    [12]尉晓红. 粉煤灰利用综述[J].山西煤炭管理干部学院学报,2013(2):117-118.

    [WEI X H. A review of the utilization of fly ash[J]. Journal of Shanxi Coal-Mining Administrators College, 2013(2):117-118. (in Chinese)]
    [13]
    [13]麻海燕,吴雅玲,余红发,等. 机场道面除冰液作用下大掺量粉煤灰混凝土的抗冻性[J].建筑科学与工程学报,2014,31(2):78-83.

    [MA H Y, WU YL, YU H F, et al. Freeze-thaw Durability of High Volume Fly Ash Content Concrete Exposed to Airfield Pavement Deicer[J].Journal of Architecture and Civil Engineering,2014,31(2):78-83. (in Chinese)]
    [14]
    [14]陈涛,顾强康,郭院成. 石灰、水泥、粉煤灰改良膨胀土对比试验[J].公路,2008,53(6):164-167.

    [CHEN T, GU Q K, GUO Y C. Contrast test for Lime, Cement Dosage, Fly Ash with improved expansive soil[J]. Highway, 2008,53(6):164-167. (in Chinese)]
    [15]
    [15]方庆军,洪宝宁. 岩土体微细结构研究进展[J].科学技术与工程,2014,14(17):143-149.

    [FANG Q J, HONG B N. Research progress at geotechnical Micro and Mesostructure[J]. Science Technology and Engineering, 2014,14(17):143-149. (in Chinese)]
  • Related Articles

    [1]CHAI Shouxi, ZHANG Lin, WEI Li, TIAN Mengmeng. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96-105. DOI: 10.16030/j.cnki.issn.1000-3665.20212026
    [2]LI Qiang, LI Tonglu, LI Hua, SHEN Wei, LI Ping, ZHANG Changliang. Numerical analysis of evolution of the unsaturated soil micro-structure with capillary action during compression[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 135-143. DOI: 10.16030/j.cnki.issn.1000-3665.202110045
    [3]GU Di, YAN Xuexin, ZHANG Yun, BAI Yang, YANG Tianliang. Micro-mechanism of compression and rebound of clay in Shanghai[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 123-131. DOI: 10.16030/j.cnki.issn.1000-3665.201912022
    [4]ZHANGXueyi, . 黏土微观孔隙结构对可溶性污染物运移的影响[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 151-157. DOI: 10.16030/j.cnki.issn.1000-3665.2018.04.23
    [5]ZHANGZulian, . 干湿循环作用下红土抗剪强度与微结构关系研究[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 78-85. DOI: 10.16030/j.cnki.issn.1000-3665.2018.03.10
    [6]YANKai, . 基于显微CT图像的黄土微结构研究[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 71-77. DOI: 10.16030/j.cnki.issn.1000-3665.2018.03.09
    [7]CAIJiaojiao, . 武汉一级阶地基坑降水引起土层水位变化及压缩变形研究[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 90-95. DOI: 10.16030/j.cnki.issn.1000-3665.2018.02.14
    [8]YANGAi-wu, . A study of the formation of structure yield stress subject to creep of the soft dredger fill[J]. Hydrogeology & Engineering Geology, 2011, 38(6): 62-67.
    [9]YANGAi-wu, . Study on sediment characteristics and micro-structure of soft dredger soil of Tianjin[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 83-87.
    [10]CHENGYu-xiang, . Micro-structural effect of sheer failure in structured hydraulic fill[J]. Hydrogeology & Engineering Geology, 2008, 35(1): 32-35.
  • Cited by

    Periodical cited type(20)

    1. 唐浩,余江波,杨尚川. 隧道开挖粉煤灰地层水泥加固土三轴试验研究. 公路. 2024(04): 299-304 .
    2. 肖桂元,刘星,刘巍,王一鹏,王浩鹏. 玻璃纤维-石灰复合改良红黏土的强度特性研究. 公路. 2024(09): 275-284 .
    3. 王小龙,李晓娟,李渊,聂鹏强. 碱液处理红黏土抗压强度演变规律研究. 路基工程. 2023(02): 226-229 .
    4. 何艳春,章孝建,成岗. 偏高岭土地聚物对红黏土力学性能的影响. 交通科学与工程. 2023(03): 46-51 .
    5. 陈忠清,朱泽威,吕越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究. 水文地质工程地质. 2022(04): 100-108 . 本站查看
    6. 龚锦林,卓斌. 水泥改良高液限红黏土力学性能及微观机制研究. 湖南交通科技. 2022(03): 17-22 .
    7. 崔宏环,闫利,赵嘉. 高铁路基水泥粉煤灰填料冻融特性研究. 铁道科学与工程学报. 2022(10): 2785-2793 .
    8. 肖翔,胡冬冬,何小丽,刘之葵. 改良土的研究现状及展望. 土工基础. 2021(03): 359-364 .
    9. 吕超,马晓凡,王颖. 基于核磁共振与无侧限抗压试验对纤维加固红黏土的宏微观特性研究. 铁道科学与工程学报. 2021(08): 2066-2072 .
    10. 周波,陈开圣,王磊. 石灰磷石膏稳定红粘土最优配比研究. 中国水运(下半月). 2021(09): 159-160 .
    11. 周波,陈开圣,王磊. 石灰磷石膏稳定红粘土最优配比研究. 中国水运(下半月). 2021(18): 159-160 .
    12. 陈佳雨,刘之葵,陈永国,席丹妮. 纤维红黏土强度的正交试验及多元非线性回归分析. 水文地质工程地质. 2020(01): 117-124 . 本站查看
    13. 张瑶丹,陈筠,施鹏超,陈泰徐,杨恒,杨永宇. 碱处理红黏土的力学强度试验研究. 长江科学院院报. 2020(03): 170-177 .
    14. 李佳明,陈学军,黄翔,宋宇. 纳米碳酸钙对红黏土的影响及其作用机理分析. 桂林理工大学学报. 2020(01): 109-116 .
    15. 李良勇,马炜迪,曹宝珠. 以天然椰壳纤维加固的红黏土的力学性质研究. 海南大学学报(自然科学版). 2020(03): 304-308 .
    16. 赵涵洋,雷学文,陈亿军. 活性MgO改性红黏土试验研究. 公路. 2020(11): 314-319 .
    17. 周明凯,徐福增,穆璇,马泽慧. 掺砂对红黏土增湿强度特性的影响研究. 山东工业技术. 2019(10): 222-223 .
    18. 何添杰,刘之葵,董兵红,李屹然. 桂林岩溶区红粘土固结特性研究. 土工基础. 2019(04): 442-445 .
    19. 鲍洋,戴剑勇,徐志豪,康虔. 水泥掺量对红粘土固结体抗剪特性影响的试验研究. 南华大学学报(自然科学版). 2019(04): 32-37 .
    20. 杨文青. 干湿循环作用下石灰粉煤灰改性红黏土路用性能研究. 内蒙古公路与运输. 2018(05): 44-46+49 .

    Other cited types(24)

Catalog

    Article views (1390) PDF downloads (1082) Cited by(44)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return