ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
WUFangdong, . Run-out characteristic simulation of a surcharge-induced soil landslide using the material point method[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 126-126.
Citation: WUFangdong, . Run-out characteristic simulation of a surcharge-induced soil landslide using the material point method[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 126-126.

Run-out characteristic simulation of a surcharge-induced soil landslide using the material point method

More Information
  • Received Date: December 26, 2016
  • Revised Date: April 04, 2017
  • Spoil ground surcharge is one of the main factors inducing landslides in hilly grounds triggered by human engineering activities. The material point method (MPM) belongs to one of the meshless numerical analysis method, which can effectively simulate the material behavior and the run-out characteristics of landslides. Based on the discrete method using the linear shape function, the MUSL solving format and the Drucker-Prager yield criterion, we develop a single-layer and single-phase MPM model to simulate the run-out process of landslides. In comparison with the benchmark experiment results of the process of a sand pile losing its stability and simulated with accumulated dry aluminum bars, the proposed MPM model is verified. The run-out process of the typical scenario of the surcharged-induced soil landslide is simulated using MPM. The related results during the representative moments of the run-out process, including the morphology of slope mass, the plastic strain distribution and sliding velocity evolution trends of reference points, are obtained. The results of the numerical example show that the surcharge-induced soil landslide belongs to the thrust-type landslide, and is of the progressive failure. The whole run-out process can be divided into 4 stages, namely, the slope crest compression, local creep sliding, accelerated sliding and decelerated sliding. Concerning the sliding front, the results of parametric analysis also show that a strong positive correlation property exists between both of the kinetic representative parameters and the surcharge amount, and a strong negative correlation property exits between the kinetic representative parameters and the cohesion or internal friction angle of the soil. It is noted that the kinetic representative parameters include the maximal sliding acceleration, velocity, distance and kinetic energy of the slope mass. Based on 29 typical scenarios, the linear regression equations of all of the above 4 kinetic representative parameters, denoted by the surcharge amount, cohesion and internal friction angel of the soil, are established to predict the disastrous behavior of the surcharge-induced soil landslides.
  • [1]
    [1]张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4): 530-540.

    [ZHANG M S, LI T L. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 2011, 19(4): 530-540 (in Chinese)]
    [2]
    [2]I k N S, Doyuran V, Ulusay R. Assessment of a coastal landslide subjected to building loads at Sinop, Black Sea region, Turkey, and stabilization measures[J]. Engineering Geology, 2004, 75(1): 69-88.
    [3]
    [3]刘传正. 南昆铁路八渡滑坡成因机理新认识[J]. 水文地质工程地质, 2007, 34(5): 1-5.

    [LIU C Z. A new discussion about genesis and failure mechanism of Badu landslides in Nanning-Kunming railway[J]. Hydrogeology & Engineering Geology, 2007,34(5): 1-5 (in Chinese)]
    [4]
    [4]胡田飞. 堆载诱发型滑坡变形演化机理的模型试验研究[J]. 石家庄铁道大学学报(自然科学版), 2016,29(1):38-42.

    [HU T F. Model test study of deformation mechanism of landslide induced by loading[J].Journal of Shijiazhuang Railway Institute,2016, 29(1):38-42 (in Chinese)]
    [5]
    [5]LI N, CHENG Y M. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge[J]. Natural Hazards and Earth System Sciences, 2015, 15:35-43
    [6]
    [6]ZHU H H, SHI B, ZHANG J, et al. Distributed fiber optic monitoring and stability[J]. Journal of Mountain Science, 2014, 11(4): 979-989.
    [7]
    [7]陈春利, 李同录, 贺凯, 等. 人工堆载诱发黄土滑坡失稳机制分析[J]. 中国地质灾害与防治学报, 2014, 25(1): 1-5.

    [CHEN C L, LI T L, HE K, et al. Mechanism of loess landslide induced by loading[J]. The Chinese Journal of Geological Hazard and Control, 2014,25(1): 1-5 (in Chinese)]
    [8]
    [8]王洪兵, 姚磊华, 文海. 基于FLAC3D 进行堆载作用下边坡稳定分析[J]. 勘察科学技术, 2012 (4): 5-10.

    [WANG H B, YAO L H, WEN H. Stability analysis of slope under preloading based on FLAC3D[J].Site Investigation Science and Technology, 2012 (4): 5-10 (in Chinese)]
    [9]
    [9]董夫钱, 缪志顺, 吕庆, 等. 公路堆载诱发型滑坡稳定性分析[J]. 岩石力学与工程学报, 2004 (增刊): 4517-4520.

    [DONG F Q, MIAO Z S, LV Q, et al. Mechanism analysis of landslide induced by accumulation loading of highway[J]. Chinese Journal of Rock Mechanics and Engineering, 2004 (Sup1): 4517-4520 (in Chinese)]
    [10]
    [10]张伟锋, 黄润秋, 裴向军. 大光包滑坡运动特征及其过程分析[J]. 工程地质学报, 2015, 23(5): 866-885.

    [ZHANG W F, HUANG R Q, PEI X J. Analysis on kinematics characteristics and movement process of Daguangbao landslide[J].Journal of Engineering Geology, 2015, 23(5): 866-885 (in Chinese)]
    [11]
    [11]罗锋, 柴波, 方恒, 等. 顺层岩质滑坡运动过程数值模拟研究[J]. 水文地质工程地质, 2016, 43(3): 124-130.

    [LUO F,CHAI B,FANG H, et al. Numerical simulation of the bedding rock landslide motion process[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 124-130 (in Chinese)]
    [12]
    [12]殷坤龙, 姜清辉, 汪洋. 滑坡运动过程仿真分析[J]. 地球科学(中国地质大学学报), 2002,27(5): 632-636.

    [YIN K L, JIANG Q H, WANG Y. Simulation of landslide movement process by discontinuous deformation analysis[J]. Earth Science(Journal of China University of Geosciences), 2002, 27(5):632-636 (in Chinese)]
    [13]
    [13]张雄, 廉艳平, 刘岩,等. 物质点法[M]. 北京:清华大学出版社, 2013.

    [ZHANG X, LIAN Y P, LIU Y, et al. Material point method[M]. Beijing: Tsinghua University Press, 2013 (in Chinese)]
    [14]
    [14]张雄, 刘岩, 马上. 无网格法的理论及应用[J]. 力学进展, 2009,39(1): 1-36.

    [ZHANG X, LIU Y, MA S. Meshfree methods and their applications[J]. Advances in Mechanics, 2009,39(1) : 1-36 (in Chinese)]
    [15]
    [15]York II A R, Sulsky D, Schreyer H L. The material point method for simulation of thin membranes[J]. International Journal for Numerical Methods in Engineering,1999,44: 1429-1456.
    [16]
    [16]York II A R, Sulsky D, Schreyer H L. Fluid membrane interaction based on the material point method[J]. International Journal for Numerical Methods in Engineering, 2000,48: 901-924.
    [17]
    [17]Beuth L, Wicknoski Z, Vermeer P. Solution of quasi-static large-strain problem by the material point method[J]. International Journal for Numerical and Analytical method in Geomechanics, 2011,35(13): 1451-1465.
    [18]
    [18]Andersen S, Andersen L. Modelling of landslides with the material-point method[J]. Computational Geosciences, 2010, 14(1): 137-147.
    [19]
    [19]史卜涛, 张云, 张巍. 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2016, 38(9): 1678-1684.

    [SHI B T, ZHANG Y, ZHANG W. Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2016,38(9): 1678-1684 (in Chinese)]
    [20]
    [20]孙玉进, 宋二祥. 大位移滑坡形态的物质点法模拟[J]. 岩土工程学报, 2015, 37(7): 1218-1225.

    [SUN Y J, SONG E X. Simulation of large-displacement landslide by material point method[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1218-1325 (in Chinese)]
    [21]
    [21]张巍,史卜涛,施斌,等. 土质滑坡运动全过程的物质点法模拟及其应用[J]. 工程地质学报, 2017, 25(3):815-823.

    [ZHANG W, SHI B T, SHI B, et al. Run-out process simulation of soil landslide using material point mehtod and its application[J]. Journal of Engineering Geology, 2017,25(3):815-823. (in Chinese)]
    [22]
    [22]Yerro A, Alonso E, Pinyol N. The material point method for unsaturated soils[J]. Géotechnique,2015, 61(3): 201-217.
    [23]
    [23]BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12):1537-1570.
    [24]
    [24]王宝亮, 彭盛恩, 陈洪凯. 推移式滑坡形成机制的力学演绎[J]. 地质灾害与环境保护, 2010 (2): 74-77.

    [WANG B L,PENG S E,CHEN H K. Mechanical deduction of formation mechanism for the thrust load caused landslide[J].Journal of Geological Hazards and Environment Preservation, 2010 (2): 74-77 (in Chinese)]
    [25]
    [25]卢应发, 黄学斌, 刘德富. 推移式滑坡渐进破坏机制及稳定性分析[J]. 岩石力学与工程学报, 2016, 35(2): 333-345.

    [LU Y F,HUANG X B,LIU D F. Mechanism and stability analyses of progressive failure of thrust-type landslides[J].Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 333-345 (in Chinese)]
    [26]
    [26]王效宁, 杜永廉, 巫锡勇. 岩质顺层滑坡的运动灾害性模拟试验研究[J]. 水文地质工程地质, 1988, 15(6): 1-5.

    [WANG X N, DU Y L, WU X Y. Simulation and experimental study on movement severe of bedding rock landslide[J].Hydrogeology & Engineering Geology, 1988, 15(6):1-5 (in Chinese)]
  • Related Articles

    [1]WANG Jiajia, CHEN Haojun, XIAO Lili, LI Zhiqiang. Stability and motion characteristics of bridge slope in the large reservoir area[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 130-139. DOI: 10.16030/j.cnki.issn.1000-3665.202211015
    [2]RUAN Yongfen, LI Penghui, ZHU Qiang, WANG Yong, YAN Ming. Determination of geotechnical parameters based on the unsupervised learning method[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 149-159. DOI: 10.16030/j.cnki.issn.1000-3665.202207046
    [3]LONG Yanmei, SONG Zhang, WANG Yufeng, CHENG Qiangong, LI Kun, WU Yue. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 126-136. DOI: 10.16030/j.cnki.issn.1000-3665.202011035
    [4]WEN Baoping, WANG Fan. Precursors and Motion Characteristics of the 1965 Lannigou Rockslides and the Subsequent Evolution[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 72-80. DOI: 10.16030/j.cnki.issn.1000-3665.202108065
    [5]ZONGChengyuan, . Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 1-8. DOI: 10.16030/j.cnki.issn.1000-3665.201906018
    [6]YANGHailong, . Influence of terrain factors on the motion parameters of the turning-type landslide-debris flow[J]. Hydrogeology & Engineering Geology, 2019, 46(3): 129-129. DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.18
    [7]CHENZiyu, . Analyses of the existing problems in the double parameters reduction method[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 125-125. DOI: 10.16030/j.cnki.issn.1000-3665.2019.02.17
    [8]TIANYou, . 黄土滑坡发育特征参数的幂律相依性研究[J]. Hydrogeology & Engineering Geology, 2018, 45(3): 131-137. DOI: 10.16030/j.cnki.issn.1000-3665.2018.03.18
    [9]NIEQing-lin~, . Methods of determining parameters of a confined aquifer with pumping tests[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 37-40.
    [10]LULe~, . Identification of hydrogeological parameters based on the Bayesian method[J]. Hydrogeology & Engineering Geology, 2008, 35(5): 58-63.
  • Cited by

    Periodical cited type(7)

    1. 钟祖良,贺凯源,宋宜祥,郑勇. 基于仿射速度矩阵改进物质点法的大位移滑坡研究. 岩土工程学报. 2022(09): 1626-1634+3-5 .
    2. 邢鹏飞,田波,黄谱,魏楠,赵准. 川中丘陵区人工堆载诱发管道滑坡灾害特征与发育机制. 中国水运(下半月). 2022(10): 119-121 .
    3. 邢鹏飞,田波,黄谱,魏楠,赵准. 川中丘陵区人工堆载诱发管道滑坡灾害特征与发育机制. 中国水运. 2022(20): 119-121 .
    4. 严东方,郑茂营,邹烨. 某高速公路边坡失稳成因分析及治理设计. 路基工程. 2020(01): 202-206 .
    5. 施家杰,张巍,厉成阳,解朝阳,朱雨辰. 水合物分解诱发能源土滑坡的物质点法模拟. 工程地质学报. 2019(05): 1164-1171 .
    6. 董友扣,马家杰,王栋,RANDOLPH Mark. 深海滑坡灾害的物质点法模拟. 海洋工程. 2019(05): 141-147 .
    7. 董学刚,石永超. 黄浦江上海市区段防汛墙墙后堆载限值研究. 人民长江. 2019(12): 113-117 .

    Other cited types(11)

Catalog

    Article views (1047) PDF downloads (961) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return