Research on the relationship between saturated permeability and pore distribution characteristics of loess-paleosol
-
摘要:
由于沉积环境的差异,古土壤较上覆黄土致密,其饱和渗透系数应低于黄土,但试验结果却显示二者的饱和渗透系数相近。为揭示这一现象的机理,在陕西泾阳南黄土塬开挖33 m的探井,沿井壁按1 m间距取黄土和古土壤原状试样,进行变水头渗透试验,测定试样的饱和渗透系数。同时用压汞试验(mercury intrusion porosimetry, MIP)及扫描电镜(scanning electron microscope, SEM)测试分别获取试样的孔隙分布曲线和微观结构图像,以分析黄土-古土壤饱和渗透性与孔隙分布特征的关系。结果表明:(1)黄土-古土壤地层的饱和渗透系数整体上沿深度方向规律性减小,但相邻黄土和古土壤层的饱和渗透系数无明显差异;(2)MIP及SEM测试结果表明,黄土结构均匀、孔隙大小较为一致,而古土壤具有不均匀的团块-裂隙结构,虽然团块内部较黄土致密,但团块间存在裂隙;(3)饱和渗透系数的大小取决于透水孔隙的体积分数,其中黄土的透水孔隙主要为较大孔隙(孔径>2 μm),而古土壤的透水孔隙主要为团块间的微裂隙,虽然二者渗透系数相近,但渗透机理完全不同。为研究黄土与古土壤的孔隙分布特性和解决黄土区工程建设中的问题提供了理论依据。
Abstract:Due to differences in sedimentary environments, the paleosol is denser than the overlying loess, and its saturated permeability coefficients should be lower than that of the loess. This intuitive understanding has been challenged by the experimental results of several permeability tests which indicate that paleosol and loess have similar saturated permeability. In order to reveal the mechanism behind this phenomenon, we focused on the loess-paleosol strata of the loess tableland located in Jingyang County, Shaanxi Province. Undisturbed loess and paleosol specimens were extracted at equal intervals of 1 m from a 33 m exploratory well. Variable head permeability (VHP) tests were then conducted to determine their saturated permeability coefficients. Concurrently, mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) tests were conducted to obtain the pore distribution curves and microstructure images of typical samples, respectively. The analysis of the relationship between saturated permeability and pore distribution characteristics in loess-paleosol was analyzed based on the aforementioned experimental results. VHP test results illustrated that the saturated permeability coefficients of loess and paleosol decrease regularly with increasing burying depth, and the values of the saturated permeability coefficients of adjacent loess and paleosol samples are very close. MIP and SEM test results demonstrated a consistent pore structure in loess, whereas paleosol exhibited an irregular clump-fissure structure characterized by the presence of fissures in dense clay clumps. Saturated permeability coefficients were found to be contingent on the content of permeable pores, with loess primarily featuring large pores (pore diameter > 2 μm), and paleosol predominantly consisting of micro-cracks between clumps. Despite their similar permeability coefficients, the permeability mechanism were fundamentally different. This study establishes a theoretical foundation for studying the pore distribution characteristics of loess and paleosol, as well as addressing engineering challenges in loess areas.
-
Keywords:
- loess /
- paleosol /
- saturated permeability coefficient /
- pore-size distribution /
- microstructure
-
黄土地层由黄土和古土壤交互叠置沉积。已有研究表明,黄土形成于干冷气候环境,沉积速度快,厚度大,但成壤作用弱,土体结构松散,黏粒含量少;而古土壤形成于湿热气候环境,沉积速度慢,厚度小,但成壤作用强,结构致密坚硬,黏粒含量多[1 − 2]。由于古土壤黏粒含量高,且结构远比黄土致密,因此一般认为古土壤的渗透系数应显著低于黄土[3 − 6]。例如在长期降雨或灌溉条件下,古土壤顶层会形成上层滞水,这一现象似乎符合上述直观认识。然而大量同一序列邻近黄土与古土壤的饱和渗透试验结果显示,古土壤的渗透系数并没有显著低于上下黄土层的渗透系数。如赵景波等[7]采用原位双环渗透试验,测得白鹿塬地区黄土-古土壤地层(L1—S3)的饱和渗透系数,试验结果未表现出古土壤层显著低于黄土层的现象;Zhao等[8 − 9]在洛川塬和少陵塬进行了原位渗透试验,2处的渗透系数均随埋深的增大逐渐减小,但黄土和古土壤可用一条趋势线拟合;Hou等[4]对泾阳南塬修石渡剖面开展室内常水头渗透试验,渗透系数随深度增大逐渐减小,但临近黄土与古土壤渗透系数相近;Wang等[10]通过室内变水头渗透试验对泾阳南塬黄土地层(L1—S2)进行测试,获得相同的结果。之所以会产生这种直观认识与试验结果矛盾,可能是由于古土壤和黄土的饱和渗透性并不取决于它们的致密程度和黏粒含量,而是与它们的孔隙分布特征有关。为了进一步揭示其原因,需对黄土和古土壤饱和渗透性与孔隙分布特征之间的关系展开研究。
一些学者研究了黄土地层饱和渗透系数与总孔隙量和大孔隙量之间的关系。Shao等[11]研究了白鹿塬黄土-古土壤序列的渗透性,认为孔隙度是渗透性差异的主要影响因素;鲁拓等[12]研究了马兰黄土孔隙分形特征与渗透性关系,结果表明孔隙率是影响渗透系数的关键因素;洪勃等[13]对重塑马兰黄土进行了饱和渗透试验,结果表明渗透系数随孔隙比的减小而减小。Rezaee等[14]指出孔隙大小的分布是影响渗透性的一个主要因素,它比孔隙度更详细地指示了复杂的孔隙分布特征。Zhao等[9]对洛川塬的渗透性研究结果表明高孔隙度并不总是与高渗透系数严格一致;高燕燕等[15]对重塑马兰黄土的渗透性进行了研究,分析了饱和渗透系数随孔隙度的变化规律,认为饱和渗透系数主要受到大孔隙的影响;杨玉茹等[16]分析了孔隙微观结构参数与渗透系数之间的关系,认为渗透系数的大小主要与中孔隙(4~16 μm)和大孔隙(>16 μm)有关;同样地,李云峰[17]认为透水性首先取决于孔隙的大小,其次是孔隙的多少。
这些研究虽从不同方面探讨了黄土地层饱和渗透系数与总孔隙量和大孔隙量的关系,并得出了一些有意义的研究结论,但都没有对相邻黄土和古土壤饱和渗透性相近这一现象的根本原因进行深入探讨。为澄清这一问题,本文以陕西泾阳黄土塬地层为研究对象,在一个包含L1—S3地层、33 m深的探井中,沿井壁按1 m的垂向间距设置取样点,并在每个取样点各取2个原状试样,进行室内变水头饱和渗透试验测定黄土-古土壤地层序列的饱和渗透系数,探讨饱和渗透系数随沉积年代的变化特征,之后开展压汞试验(mercury intrusion porosimetry, MIP)及扫描电镜(scanning electron microscope, SEM)试验获取试样的孔隙分布曲线和微观结构图像[18 − 19],最后结合渗透试验结果分析黄土-古土壤地层的饱和渗透性和孔隙分布特征的关系。
1. 研究区概况
研究区位于陕西泾阳南黄土塬,地处关中盆地,是渭北黄土台塬的一部分。取样点位于泾河南岸,具体位置见图1。泾阳南黄土塬顶为渭惠渠灌区,地形平坦,总体地势呈西北高东南低。塬顶与河床高差约85 m,塬边斜坡坡度多为40°~50°,最陡处65°,出露地层为第四系风成黄土层,地层完整,分层界面明显。该区域属暖温带大陆性季风气候,四季分明,年均气温13 °C,年均降水量548.7 mm。
塬边出露S0—L9的黄土-古土壤地层,地层连续完整,黄土与古土壤相间分布,如图2所示。图中各地层年代通过与Ding等[20]的洛川黄土-古土壤标准剖面地层年龄对比确定。
2. 试验方案
2.1 取样
在塬顶距坡边20 m处开挖一直径0.8 m、深33.0 m的探井。探井中出露的7个地层厚度分别为0.8,10.5,3.0,9.1,3.4,4.6,1.6 m。出露地层中,黄土层呈棕黄色,结构均匀,厚度大,成分以粉粒为主;古土壤层呈棕红色,局部含团粒和包裹体,团粒致密坚硬,其中柱状裂隙发育,在裂隙表面可见淋滤作用形成的白色碳酸钙粉末。
表层S0为新近堆积的全新世黄土(Q4),作为耕植层或植被层,受扰动较大,故探井开挖过程中从离顶面1 m处,每间隔1 m取2个散土样、2个普通环刀样(直径61.8 mm,高20 mm)和2个渗透环刀样(直径61.8 mm,高40 m),其中散土样用于测定含水率和粒度组成,普通环刀样用于测定密度,渗透环刀样用于测定饱和渗透系数。同时在深度为5.5 m(L1)、11.5 m(S1)、18.0 m(L2)、24.0 m(S2)、28.8 m(L3)、32.0 m(S3)处各取30 mm的立方体块状样用于获取L1—S3的孔隙分布和微观结构,取散土样用于测定矿物成分。
2.2 基本物理指标测定
采用烘干法测定含水率。环刀法测定密度。比重瓶法测定比重。Bettersize 2000 激光粒度分析仪测定粒度组成。TRRⅢ多功能X射线衍射仪测定矿物成分。采用TST-55型渗透仪和变水头法测饱和渗透系数。
2.3 孔隙分布测定
通过MIP获取孔隙分布曲线,试验采用AutoPore IV 9500 型全自动压汞仪[21 − 22]。该压汞仪的低压测试范围为3~207 kPa,高压测试范围为207~ 413 700 kPa,可测定的孔隙直径为0.003~345 μm。试验环境温度控制在(20±2) °C,并保持良好的通风条件。
试验前将所取的原状样削成长度为10 mm的立方体,冷冻干燥后称重,水平放置于膨胀计中抽至真空,再将汞液注入膨胀计,逐步施加注汞压力直至试验结束。压汞仪可自动记录进汞压力p(d)及相应压力下的进汞体积(∆V)和累积进汞体积(V)。利用Washburn 公式将p(d)换算为孔隙直径(D),得到D与进汞量(−dV/dlgD)间的关系曲线,即孔隙密度分布曲线。
2.4 SEM微结构图像提取
采用JSM-7500F型的冷场发射扫描电子显微镜提取黄土和古土壤的微结构图像,电镜试验的环境温度控制在(24±2) °C。试验时,将原状样切成10 mm×10 mm×30 mm的条柱形,水平放置至自然风干,轻轻掰断获得垂向自然断面,再将试样用胶固定在样托上,对观察面喷金,最后置于显微镜下拍照提取微结构图像。
3. 试验结果
3.1 基本物理指标特征
S0—S3的基本物理指标与深度的关系如图3所示。由图可知,总体趋势上,随着深度的增大,天然含水率和饱和度逐渐增大,而饱和含水率逐渐减小。同时,随深度的增加,天然密度和干密度均增大,表明沉积年代越久,土体越密实。但古土壤的干密度一般略高于其上下的黄土层,而孔隙比则略小于其上下的黄土层,表明古土壤较相近沉积年代黄土密实。粒度组成上,古土壤细粒较多,粗粒少,与黄土相反。
L1—S3试样的颗分曲线和频率分布曲线如图4所示。由图可知,L1—S3地层黄土和古土壤的颗粒累积分布曲线的形态较为相似,而频率分布曲线特征有一定差异。黄土的频率分布曲线为双峰型,而古土壤为三峰型,这种差异与成壤作用有关。古土壤的累积分布曲线均位于黄土层曲线左侧,而<2 μm粒径的分布频率均较黄土高,表明古土壤层颗粒较黄土层细。
X射线衍射仪测定的L1—S3矿物成分如表1和表2所示。由表1可见,L1—S3黄土和古土壤的矿物成分基本相同,全岩矿物以石英、斜长石、方解石为主,含少量钾长石、白云石、角闪石,个别地层含少量黄铁矿;表2中可以看出黏土矿物以伊蒙混层和伊利石为主,含少量高岭石和绿泥石。L1—S3全岩矿物的质量分数均大于黏土矿物,而古土壤层的黏土矿物略多于其上下的黄土层。其中古土壤的伊蒙混层和高岭石多于黄土,而黄土中的伊利石相对质量分数则高于其上下古土壤,这是由于干冷环境有利于伊利石的保存,湿热环境有利于蒙脱石和高岭石的保存[23]。
表 1 黄土-古土壤序列的全岩矿物成分Table 1. Composition of rock minerals in the loess-paleosol sequence地层 全岩矿物质量分数/% 全岩矿物相对质量分数/% 石英 钾长石 斜长石 方解石 白云石 黄铁矿 角闪石 L1 72.5 38.5 1.7 12.5 16.8 2.0 — 1.0 S1 71.5 38.9 2.5 13.6 13.5 1.8 — 1.2 L2 78.2 37.6 3.1 12.0 17.0 3.8 0.7 4.0 S2 72.8 41.9 1.3 10.6 18.2 — — 0.8 L3 74.8 38.5 3.1 11.4 16.3 3.8 — 1.7 S3 70.9 38.7 2.7 9.1 17.6 2.0 0.8 — 表 2 黄土-古土壤序列的黏土矿物成分Table 2. Composition of clay minerals in loess-paleosol sequence地层 黏土矿物质量分数/% 黏土矿物相对质量分数/% 混层比/%S 伊蒙混层 伊利石 高岭石 绿泥石 绿蒙混层 伊蒙混层 绿蒙混层 L1 27.5 44 36 9 11 — 45 — S1 28.5 51 27 10 12 — 20 — L2 21.8 36 40 9 15 — 40 — S2 27.2 40 35 10 15 — 45 — L3 25.2 33 41 9 17 — 40 — S3 29.1 54 23 10 13 — 50 — 注:“—”表示该地层不存在此种矿物。 3.2 饱和渗透系数
饱和渗透系数与取样深度的关系如图5所示。S0—S3的饱和渗透系数大多在0.7×10−4~1.0×10−3 cm/s区间内,其中S1及其以上黄土和古土壤的饱和渗透系数随深度变化趋势不明显,自L2开始,随着深度的增大,饱和渗透系数有减小的趋势。黄土的饱和渗透系数和古土壤没有显著差异,古土壤的渗透系数与其临近的黄土渗透系数较为接近,没有明显减小的现象。
3.3 孔隙分布特征
L1—S3试样压汞试验测得的孔隙累积分布曲线和孔隙密度分布曲线如图6所示。参考雷祥义[24]、马富丽等[25]的黄土孔隙分类方案,结合研究区原状黄土的孔隙分布特征,可将孔隙按直径大小分为5类:超微孔隙(<0.1 μm)、微孔隙(0.1~<2 μm)、小孔隙(2~<5 μm)、中孔隙(5~20 μm)和大孔隙(>20 μm)。
图6(a)为黄土的孔隙分布曲线。黄土的孔隙密度曲线呈双峰型,弱势峰出现在0.02~0.05 μm之间,对应超微孔隙;优势峰出现在4~9 μm之间,对应小、中孔隙。L1—L3的峰值孔径依次递减,表明随地层年代及埋深增加,黄土的峰值孔径减小,且相应峰值密度减小。
图6(b)为古土壤的孔隙分布曲线。古土壤孔隙分布出现多峰特点,孔隙分布没有黄土集中,孔隙分布密度均小于0.3 mL/g,优势峰值孔径和峰值密度都比黄土小,峰值孔隙出现在0.5~2 μm之间,为微孔隙。S1—S3古土壤孔径大于20 μm的大孔隙数量突出,甚至多于黄土地层,但是随着沉积年代的增长,古土壤中的大孔隙量减少。
3.4 微结构特征
L1—S3试样的SEM微结构图像如图7所示。可以看出,黄土地层孔隙分布均匀,呈蜂窝状,其中孔隙大小集中为某一孔径,该孔径大小对应于压汞试验测得的优势峰孔径(图6),故定义该类孔隙结构为优势孔径孔隙结构,但其中偶有肉眼可见的圆形大孔隙,可能为根孔或动物活动痕迹。而古土壤地层为团块-裂隙结构。具体表现为,古土壤结构致密,但致密的团块间可见明显裂隙,这些裂隙对应于压汞试验测得的大中孔隙(图6),呈折线形,分布不规则,延展性差。
4. 讨论
4.1 渗透系数随深度的变化规律
将张小筱[26]、Wang等[10]测得的泾阳南塬黄土和古土壤的饱和渗透系数与本文的试验结果进行对比。由图8可知,本文测得的数据和已有数据范围基本一致。S1以上土层的饱和渗透系数多在1×10−4~1×10−3 cm/s范围内,平均值随深度基本保持不变;而L2—S3的饱和渗透系数随深度的增加呈现减小趋势。与图3对比可知,对于同一类型土层(同为黄土或者古土壤层),随深度增加,密实度增加,土体的饱和渗透性有减弱趋势。但对于不同类型土层,饱和渗透性与土体密实度关系不明显。
4.2 渗透系数与孔隙结构的关系
本文的测试结果及已有的测试结果(图8)显示古土壤与上下层临近黄土的饱和渗透系数没有明显差异,即没有古土壤明显低于黄土的现象,而是随深度连续变化。而古土壤层的孔隙比略小于其临近的黄土层(图3),故孔隙比并不是控制饱和渗透系数的关键因素。
已有研究指出黄土孔隙分为有效孔隙和无效孔隙,被结合水占据的孔隙属于无效孔隙,结合水包裹在颗粒表面,占据了孔隙空间的很大一部分,没有流动性,黏度大,不受重力影响,不能产生渗流;而较大连通孔隙为有效孔隙,是渗流的主要通道[4,27 − 31],故渗透性与土体中大孔隙的体积分数密切相关。李云峰[17]对洛川塬黄土的压汞试验结果与渗透性进行了相关分析,发现在饱和情况下仅部分孔隙透水,将由孔隙体积分数的波动引起渗透系数值波动的孔隙定义为透水孔隙,发现洛川黄土地层的透水孔隙直径大于5 μm,当孔隙直径≤5 μm时孔隙全部被结合水占据,是不透水的。Wei等[32]对泾阳南塬黄土-古土壤地层原状试样开展了X射线CT扫描试验,定量研究了孔隙与渗透系数的关系,证实了当孔隙半径>13 μm时,孔隙累积体积与渗透系数呈正相关[33]。李喜安等[34]使用图像处理软件(ImagePro Plus)技术对原状风干黄土的SEM图像进行了分析,认为微孔隙(孔径<2 μm)孔径小,孔隙面积率低,对渗流的贡献作用可以忽略不计,同时认为有效的渗流孔隙为大、中、小孔隙3类,即透水孔隙的孔径应大于2 μm。图9为本文泾阳南黄土塬剖面各地层的孔隙体积分数统计。由于直径在4~6 μm范围内的孔隙体积分数很少,大于5 μm和6 μm的孔隙体积分数几乎一致,故图中仅用一组数据同时描述大于5 μm和6 μm的孔隙体积分数。对比图8饱和渗透系数随深度的变化规律,可以看出,大于2 μm的孔隙与饱和渗透系数的变化趋势一致。
图10为各层土的饱和渗透系数均值与大于2 μm孔隙的体积分数的关系图,分析表明二者高度线性相关,相关度达95 %,说明泾阳南黄土塬黄土和古土壤的透水孔隙直径应大于2 μm。
5. 结论
(1)古土壤与上下层临近黄土的饱和渗透系数接近,饱和渗透系数随地层深度的变化是连续的,没有明显突变。
(2)黄土为优势孔径孔隙结构土,古土壤为团块-裂隙结构土,二者孔隙结构差异明显,且其孔隙分布特征也有显著差异。
(3)大孔隙量为影响饱和渗透系数的关键因素,泾阳南塬黄土和古土壤地层中孔径大于2 μm的孔隙体积分数与饱和渗透系数高度线性相关,故该地区黄土和古土壤的透水孔隙直径应大于2 μm。
-
表 1 黄土-古土壤序列的全岩矿物成分
Table 1 Composition of rock minerals in the loess-paleosol sequence
地层 全岩矿物质量分数/% 全岩矿物相对质量分数/% 石英 钾长石 斜长石 方解石 白云石 黄铁矿 角闪石 L1 72.5 38.5 1.7 12.5 16.8 2.0 — 1.0 S1 71.5 38.9 2.5 13.6 13.5 1.8 — 1.2 L2 78.2 37.6 3.1 12.0 17.0 3.8 0.7 4.0 S2 72.8 41.9 1.3 10.6 18.2 — — 0.8 L3 74.8 38.5 3.1 11.4 16.3 3.8 — 1.7 S3 70.9 38.7 2.7 9.1 17.6 2.0 0.8 — 表 2 黄土-古土壤序列的黏土矿物成分
Table 2 Composition of clay minerals in loess-paleosol sequence
地层 黏土矿物质量分数/% 黏土矿物相对质量分数/% 混层比/%S 伊蒙混层 伊利石 高岭石 绿泥石 绿蒙混层 伊蒙混层 绿蒙混层 L1 27.5 44 36 9 11 — 45 — S1 28.5 51 27 10 12 — 20 — L2 21.8 36 40 9 15 — 40 — S2 27.2 40 35 10 15 — 45 — L3 25.2 33 41 9 17 — 40 — S3 29.1 54 23 10 13 — 50 — 注:“—”表示该地层不存在此种矿物。 -
[1] 刘东生. 黄土与环境[M]. 北京:科学出版社,1985. [LIU Dongsheng. Loess and the environment[M]. Beijing:Science Press,1985. (in Chinese)] LIU Dongsheng. Loess and the environment[M]. Beijing: Science Press, 1985. (in Chinese)
[2] AN Zhisheng,LIU Tunghseng,LU Yanchou,et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China[J]. Quaternary International,1990,7/8:91 − 95.
[3] 赵景波,阴雷鹏,刘护军. 陕西长武黄土剖面S1—L4土层入渗率与成因[J]. 海洋地质与第四纪地质,2009,29(5):123 − 130. [ZHAO Jingbo,YIN Leipeng,LIU Hujun. Permeability and origin of S1—L4 soil layers in Changwu loess section in Shaanxi[J]. Marine Geology & Quanternary Geology,2009,29(5):123 − 130. (in Chinese with English abstract)] ZHAO Jingbo, YIN Leipeng, LIU Hujun . Permeability and origin of S1—L4 soil layers in Changwu loess section in Shaanxi[J]. Marine Geology & Quanternary Geology,2009 ,29 (5 ):123 −130 . (in Chinese with English abstract)[4] HOU Kai,QIAN Hui,ZHANG Yuting,et al. Relationship between fractal characteristics of grain-size and physical properties:Insights from a typical loess profile of the loess Plateau[J]. Catena,2021,207:105653. DOI: 10.1016/j.catena.2021.105653
[5] HOU Kai,QIAN Hui,ZHANG Qiying,et al. Influence of Quaternary paleoclimate change on the permeability of the loess-paleosol sequence in the Loess Plateau,northern China[J]. Earth Surface Processes and Landforms,2020,45(4):862 − 876. DOI: 10.1002/esp.4779
[6] MA Yandong,ZHAO Jingbo,LIU Rui,et al. Formation and movement of groundwater in the thick loess-palaeosol sequences of the Chinese Loess Plateau[J]. Pedosphere,2018,28(6):895 − 904. DOI: 10.1016/S1002-0160(17)60419-3
[7] 赵景波,邵天杰,牛俊杰. 西安白鹿塬黄土渗透性与含水条件[J]. 地理研究,2009,28(5):1188 − 1196. [ZHAO Jingbo,SHAO Tianjie,NIU Junjie. Permeability and water-bearing conditions of loess in Bailu tableland in the eastern suburbs of Xi’an[J]. Geographical Research,2009,28(5):1188 − 1196. (in Chinese with English abstract)] DOI: 10.3321/j.issn:1000-0585.2009.05.005 ZHAO Jingbo, SHAO Tianjie, NIU Junjie . Permeability and water-bearing conditions of loess in Bailu tableland in the eastern suburbs of Xi’an[J]. Geographical Research,2009 ,28 (5 ):1188 −1196 . (in Chinese with English abstract) DOI: 10.3321/j.issn:1000-0585.2009.05.005[8] ZHAO Jingbo,MA Yandong,CAO Junji,et al. Effect of Quaternary climatic change on modern hydrological systems in the southern Chinese Loess Plateau[J]. Environmental Earth Sciences,2015,73(3):1161 − 1167. DOI: 10.1007/s12665-014-3469-1
[9] ZHAO Jingbo,LONG Tengwen,WANG Changyan,et al. How the Quaternary climatic change affects present hydrogeological system on the Chinese Loess Plateau:A case study into vertical variation of permeability of the loess–paleosol sequence[J]. Catena,2012,92:179 − 185. DOI: 10.1016/j.catena.2011.12.009
[10] WANG Wei,WANG Yu,SUN Qiming,et al. Spatial variation of saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau,China[J]. Engineering Geology,2018,236:70 − 78. DOI: 10.1016/j.enggeo.2017.08.002
[11] SHAO Tianjie,WANG Ruojin,XU Zhiping,et al. Permeability and groundwater enrichment characteristics of the loess-paleosol sequence in the southern Chinese Loess Plateau[J]. Water,2020,12:870. DOI: 10.3390/w12030870
[12] 鲁拓,唐亚明,李喜安,等. 马兰黄土孔隙分形特征与渗透性关系[J]. 科学技术与工程,2021,21(19):8138 − 8144. [LU Tuo,TANG Yaming,LI Xi’an,et al. Relationship between pore fractal characteristics and permeability of Malan loess[J]. Science Technology and Engineering,2021,21(19):8138 − 8144. (in Chinese with English abstract)] DOI: 10.3969/j.issn.1671-1815.2021.19.038 LU Tuo, TANG Yaming, LI Xi’an, et al . Relationship between pore fractal characteristics and permeability of Malan loess[J]. Science Technology and Engineering,2021 ,21 (19 ):8138 −8144 . (in Chinese with English abstract) DOI: 10.3969/j.issn.1671-1815.2021.19.038[13] 洪勃,李喜安,陈广东,等. 重塑马兰黄土渗透性试验研究[J]. 工程地质学报,2016,24(2):276 − 283. [HONG Bo,LI Xi’an,CHEN Guangdong,et al. Experimental study of permeability of remolded Malan loess[J]. Journal of Engineering Geology,2016,24(2):276 − 283. (in Chinese with English abstract)] DOI: 10.13544/j.cnki.jeg.2016.02.014 HONG Bo, LI Xi’an, CHEN Guangdong, et al . Experimental study of permeability of remolded Malan loess[J]. Journal of Engineering Geology,2016 ,24 (2 ):276 −283 . (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2016.02.014[14] REZAEE M R,JAFARI A,KAZEMZADEH E. Relationships between permeability,porosity and pore throat size in carbonate rocks using regression analysis and neural networks[J]. Journal of Geophysics and Engineering,2006,3(4):370 − 376. DOI: 10.1088/1742-2132/3/4/008
[15] 高燕燕,钱会,杨佳,等. 重塑马兰黄土渗透性的室内试验研究[J]. 南水北调与水利科技,2016,14(5):130 − 136. [GAO Yanyan,QIAN Hui,YANG Jia,et al. Indoor experimental study on permeability characteristics of remolded Malan Loess[J]. South-to-North Water Transfers and Water Science & Technology,2016,14(5):130 − 136. (in Chinese with English abstract)] DOI: 10.13476/j.cnki.nsbdqk.2016.05.021 GAO Yanyan, QIAN Hui, YANG Jia, et al . Indoor experimental study on permeability characteristics of remolded Malan Loess[J]. South-to-North Water Transfers and Water Science & Technology,2016 ,14 (5 ):130 −136 . (in Chinese with English abstract) DOI: 10.13476/j.cnki.nsbdqk.2016.05.021[16] 杨玉茹,李文平,王启庆. 上新世红土微观结构参数与渗透系数的变化关系研究[J]. 水文地质工程地质,2020,47(2):153 − 160. [YANG Yuru,LI Wenping,WANG Qiqing. A study of the relationship between the coefficient of permeability and microstructure of the Pliocene laterite[J]. Hydrogeology & Engineering Geology,2020,47(2):153 − 160. (in Chinese with English abstract)] DOI: 10.16030/j.cnki.issn.1000-3665.201905074 YANG Yuru, LI Wenping, WANG Qiqing . A study of the relationship between the coefficient of permeability and microstructure of the Pliocene laterite[J]. Hydrogeology & Engineering Geology,2020 ,47 (2 ):153 −160 . (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201905074[17] 李云峰. 利用水银测孔资料分析洛川塬黄土地层透水的最小孔径[J]. 西安地质学院学报,1990,12(1):75 − 81. [LI Yunfeng. An analysis of the smallest permeable aperture in the Luochuan loesslayers using the dataon determining koles by the Mercury-injection method[J]. Journal of Xi’an College of Geology,1990,12(1):75 − 81. (in Chinese with English abstract)] LI Yunfeng . An analysis of the smallest permeable aperture in the Luochuan loesslayers using the dataon determining koles by the Mercury-injection method[J]. Journal of Xi’an College of Geology,1990 ,12 (1 ):75 −81 . (in Chinese with English abstract)[18] 李强,李同录,李华,等. 毛细水作用下非饱和土压缩过程的微观非连续变形数值分析[J]. 水文地质工程地质,2022,49(4):135 − 143. [LI Qiang,LI Tonglu,LI Hua,et al. Numerical analysis of evolution of the unsaturated soil microstructure with capillary action during compression[J]. Hydrogeology & Engineering Geology,2022,49(4):135 − 143. (in Chinese with English abstract)] DOI: 10.16030/j.cnki.issn.1000-3665.202110045 LI Qiang, LI Tonglu, LI Hua, et al . Numerical analysis of evolution of the unsaturated soil microstructure with capillary action during compression[J]. Hydrogeology & Engineering Geology,2022 ,49 (4 ):135 −143 . (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.202110045[19] 范文,魏亚妮,于渤,等. 黄土湿陷微观机理研究现状及发展趋势[J]. 水文地质工程地质,2022,49(5):144 − 156. [FAN Wen,WEI Yani,YU Bo,et al. Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022,49(5):144 − 156. (in Chinese with English abstract)] FAN Wen, WEI Yani, YU Bo, et al . Research progress and prospect of loess collapsible mechanism in micro-level[J]. Hydrogeology & Engineering Geology,2022 ,49 (5 ):144 −156 . (in Chinese with English abstract)[20] DING Zongli,DERBYSHIRE E,YANG Shiling,et al. Stacked 2.6-Ma grain size record from the Chinese loess basedon five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography and Paleoclimatology,2002,17(3):1 − 21.
[21] 康海伟,李萍,侯晓坤,等. 原状黄土土水特征滞后性研究[J]. 水文地质工程地质,2020,47(2):76 − 83. [KANG Haiwei,LI Ping,HOU Xiaokun,et al. A study of hysteresis of soil and water characteristics of intact loess[J]. Hydrogeology & Engineering Geology,2020,47(2):76 − 83. (in Chinese with English abstract)] DOI: 10.16030/j.cnki.issn.1000-3665.201907016 KANG Haiwei, LI Ping, HOU Xiaokun, et al . A study of hysteresis of soil and water characteristics of intact loess[J]. Hydrogeology & Engineering Geology,2020 ,47 (2 ):76 −83 . (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201907016[22] 李同录,张辉,李萍,等. 不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析[J]. 水文地质工程地质,2020,47(3):107 − 114. [LI Tonglu,ZHANG Hui,LI Ping,et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology,2020,47(3):107 − 114. (in Chinese with English abstract)] DOI: 10.16030/j.cnki.issn.1000-3665.201909058 LI Tonglu, ZHANG Hui, LI Ping, et al . Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments[J]. Hydrogeology & Engineering Geology,2020 ,47 (3 ):107 −114 . (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.201909058[23] RATEEV M A,GORBUNOVA Z N,LISITZYN A P,et al. The distribution of clay minerals in the oceans[J]. Sedimentology,1969,13(1/2):21 − 43.
[24] 雷祥义. 西安黄土显微结构类型[J]. 西北大学学报(自然科学版),1983,13(4):56 − 65. [LEI Xiangyi. Type of the loess microtextures in Xi’an distrct[J]. Journal of Northwest University,1983,13(4):56 − 65. (in Chinese with English abstract)] LEI Xiangyi . Type of the loess microtextures in Xi’an distrct[J]. Journal of Northwest University,1983 ,13 (4 ):56 −65 . (in Chinese with English abstract)[25] 马富丽,白晓红,王梅. 黄土微观结构与湿陷性的定量分析[C]//河南省土木建筑学会. 首届中国中西部地区土木建筑学术年会论文集. 徐州:中国矿业大学出版社,2011:402 − 409. [MA Fuli,BAI Xiaohong,WANG Mei. Quantitative analysis of loess microstructure and collapsibility[C]//Henan Civil Engineering and Architecture Society. Proceedings of the first Annual Conference of Civil Architecture in Central and western China. Xuzhou:China University of Mining and Technology Press,2011:402 − 409. (in Chinese)] MA Fuli, BAI Xiaohong, WANG Mei. Quantitative analysis of loess microstructure and collapsibility[C]//Henan Civil Engineering and Architecture Society. Proceedings of the first Annual Conference of Civil Architecture in Central and western China. Xuzhou: China University of Mining and Technology Press, 2011: 402 − 409. (in Chinese)
[26] 张小筱. 泾阳南塬黄土边坡饱和渗透系数特性研究[D]. 西安:长安大学,2016. [ZHANG Xiaoxiao. Characteristics of loess saturated hydraulic conductivity in landslide of the south Jingyang Plateau[D]. Xi’an:Chang’an University,2016. (in Chinese with English abstract)] ZHANG Xiaoxiao. Characteristics of loess saturated hydraulic conductivity in landslide of the south Jingyang Plateau[D]. Xi’an: Chang’an University, 2016. (in Chinese with English abstract)
[27] NGUYEN X P,CUI Yujun,TANG A M,et al. Effects of pore water chemical composition on the hydro-mechanical behavior of natural stiff clays[J]. Engineering Geology,2013,166:52 − 64. DOI: 10.1016/j.enggeo.2013.08.009
[28] SINGH P N,WALLENDER W W. Effects of absorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(6):829 − 836. DOI: 10.1061/(ASCE)1090-0241(2008)134:6(829)
[29] WANG Yajing,LU Sen,REN Tusheng,et al. Bound water content of air-dry soils measured by thermal analysis[J]. Soil Science Society of America Journal,2011,75(2):481 − 487. DOI: 10.2136/sssaj2010.0065
[30] 党发宁,刘海伟,王学武,等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报,2015,34(9):1909 − 1917. [DANG Faning,LIU Haiwei,WANG Xuewu,et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1909 − 1917. (in Chinese with English abstract)] DOI: 10.13722/j.cnki.jrme.2014.1583 DANG Faning, LIU Haiwei, WANG Xuewu, et al . Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering,2015 ,34 (9 ):1909 −1917 . (in Chinese with English abstract) DOI: 10.13722/j.cnki.jrme.2014.1583[31] 丁瑜,饶云康,倪强,等. 颗粒级配与孔隙比对粗粒土渗透系数的影响[J]. 水文地质工程地质,2019,46(3):108 − 116. [DING Yu,RAO Yunkang,NI Qiang,et al. Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019,46(3):108 − 116. (in Chinese with English abstract)] DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.15 DING Yu, RAO Yunkang, NI Qiang, et al . Effects of gradation and void ratio on the coefficient of permeability of coarse-grained soil[J]. Hydrogeology & Engineering Geology,2019 ,46 (3 ):108 −116 . (in Chinese with English abstract) DOI: 10.16030/j.cnki.issn.1000-3665.2019.03.15[32] WEI Tingting,FAN Wen,YUAN Weinan,et al. Three-dimensional pore network characterization of loess and paleosol stratigraphy from South Jingyang Plateau,China[J]. Environmental Earth Sciences,2019,78:333. DOI: 10.1007/s12665-019-8331-z
[33] 李云峰. 洛川黄土地层渗透性与孔隙性的关系[J]. 西安地质学院学报,1991,13(2):60 − 64. [LI Yunfeng. Relationship between the permeability and the porosity of Luochuan’s loess layer[J]. Journal of Xi’an College of Geology,1991,13(2):60 − 64. (in Chinese with English abstract)] LI Yunfeng . Relationship between the permeability and the porosity of Luochuan’s loess layer[J]. Journal of Xi’an College of Geology,1991 ,13 (2 ):60 −64 . (in Chinese with English abstract)[34] 李喜安,刘锦阳,郭泽泽,等. 马兰黄土孔隙结构参数与渗透性关系研究[J]. 工程地质学报,2018,26(6):1415 − 1423. [LI Xi’an,LIU Jinyang,GUO Zeze,et al. Study on relationship between pore structure meters and permeability of Malan loess[J]. Journal of Engineering Geology,2018,26(6):1415 − 1423. (in Chinese with English abstract)] DOI: 10.13544/j.cnki.jeg.2017-551 LI Xi’an, LIU Jinyang, GUO Zeze, et al . Study on relationship between pore structure meters and permeability of Malan loess[J]. Journal of Engineering Geology,2018 ,26 (6 ):1415 −1423 . (in Chinese with English abstract) DOI: 10.13544/j.cnki.jeg.2017-551 -
期刊类型引用(5)
1. 葛苗苗,朱才辉,盛岱超,PINEDA Jubert,李宁. 非饱和压实黄土渗气特性及细观渗气机制研究. 岩石力学与工程学报. 2025(01): 221-235 . 百度学术
2. 李培月,李佳慧,吴健华,王远航,陈银富. 黄土-古土壤互层对土壤水分运移及土体微结构的影响. 水文地质工程地质. 2024(03): 1-11 . 本站查看
3. 石佳丽,雷开亮,亢佳伟. 基坑弱渗透性土层界面滞水导排技术研究. 水利与建筑工程学报. 2024(03): 58-65+142 . 百度学术
4. 李哲,王健,蔡泽康,封瑞坤,李锋,卜芳俠,王晓冲. 黄土台塬区红土崩解特性对泻溜侵蚀的影响. 水土保持通报. 2024(05): 1-9+57 . 百度学术
5. 高宗军,丁子祺,刘久潭,刘文悦. 砂介质渗透性影响因素的试验研究. 水文地质工程地质. 2024(06): 8-17 . 本站查看
其他类型引用(2)