ISSN 1000-3665 CN 11-2202/P
  • Included in Scopus
  • Included in DOAJ
  • Included in WJCI Report
  • Chinese Core Journals
  • The Key Magazine of China Technology
  • Included in CSCD
Wechat
ZENG Jin. A study of the rock damage and AE characteristics under the coupling of temperature, seepage and stress[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 69-74. DOI: 10.16030/j.cnki.issn.1000-3665.2018.01.10
Citation: ZENG Jin. A study of the rock damage and AE characteristics under the coupling of temperature, seepage and stress[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 69-74. DOI: 10.16030/j.cnki.issn.1000-3665.2018.01.10

A study of the rock damage and AE characteristics under the coupling of temperature, seepage and stress

More Information
  • Received Date: June 05, 2017
  • Revised Date: June 30, 2017
  • Rocks in the deep subsurface are often in a complex geological environment, and physical and mechanical behavior of the complex geological environment makes the rocks multivariate. Experimental research for the clay rocks from a mine on the thermo-hydro-mechanical coupling characteristics and acoustic emission is conducted, and the characteristics of deformation, infiltration, damage and acoustic emission of the clay rocks in different geological environments are analyzed. The results show that temperature and confining pressure have obvious damage degradation and inhibition of deformation for the specimen, and the higher the temperature, the greater the confining pressure is, and the specimen are gradually from brittle fracture to brittle ductile fracture transition. The corresponding Yu Yanshi volume changes with the change in permeability, resulting in four stages of "reduction-balance-increase-fall". The volume change and mutation point to the ring strain correspond to the permeability accelerated boundary. Under the high confining pressure and temperature, the AE is characterized by "high amplitude", and the gradient feature is not obvious, and the most active value is lag. Under low temperature and low confining pressure, the acoustic emission has obvious characteristics of the maximum gradient. The maximum value exists in the vicinity of the peak. Under the same confining pressure, the permeability damage value increases with the increasing temperature, and the greater the confining pressure, the less the permeability damage value is. The higher the temperature and the greater the confining pressure, the more uniform the damage is.

  • [1]
    GENS A, OLIVELLA S. Clay barriers in radioactive waste disposal[J]. Revue Française de Génie Civil, 2001, 5(6): 845-856. DOI: 10.1080/12795119.2001.9692329
    [2]
    CHEN L, LIU Y M, WANG J, et al. Investigation of the thermal-hydro-mechanical(THM)behavior of GMZ bentonite in the China-Mock-up test[J]. Engineering Geology, 2014, 172: 57-68. DOI: 10.1016/j.enggeo.2014.01.008
    [3]
    王长轩, 刘晓东, 刘平辉. 高放废物地质处置黏土岩处置库围岩研究现状[J]. 世界核地质科学, 2008, 25(2): 98-103. DOI: 10.3969/j.issn.1672-0636.2008.02.007

    WANG C X, LIU X D, LIU P H. Research Status of Surrounding Rock of High Quality Radioactive Waste Geological Disposal Clay Rock Disposal[J]. World Nuclear Geology Science, 2008, 25(2): 98-103. (in Chinese) DOI: 10.3969/j.issn.1672-0636.2008.02.007
    [4]
    杨立中, 黄涛. 初论环境地质中裂隙岩体渗流-应力-温度耦合作用研究[J]. 水文地质工程地质, 2000, 27(2): 33-35. DOI: 10.3969/j.issn.1000-3665.2000.02.012

    YANG L Z, HUANG T. A preliminary Study on the Coupling of Seepage, Stress and Temperature in Fractured Rock Mass in Environmental Geology[J]. Hydrogeology & Engineering Geology, 2000, 27(2): 33-35. (in Chinese) DOI: 10.3969/j.issn.1000-3665.2000.02.012
    [5]
    SCHIFFMAN R L. A thermoelastic theory of consolidation[C]//Environmental and Geophysical Heat Transfer. New York: ASME, 1972: 78-84.
    [6]
    陈卫忠, 谭贤君, 伍国军, 等. 非饱和岩石温度-渗流-应力耦合模型研究[J]. 岩石力学与工程学报, 2007, 26(12): 2395-2403. DOI: 10.3321/j.issn:1000-6915.2007.12.003

    CHEN W Z, TAN X J, WU G J, et al. Study on Temperature Seepage Stress Coupled Model of Unsaturated Rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2395-2403. (in Chinese) DOI: 10.3321/j.issn:1000-6915.2007.12.003
    [7]
    于永江, 张华, 张春会, 等. 温度及应力对成型煤样渗透性的影响[J]. 煤炭学报, 2013, 38(6): 936-941.

    YU Y J, ZHANG H, ZHANG C H, et al. Influence of Temperature and Stress on the Permeability of Formed Coal Samples[J]. Journal of the Chinese Society of Coal Science, 2013, 38(6): 936-941. (in Chinese)
    [8]
    胡雄, 梁为, 侯厶靖, 等. 温度与应力对原煤、型煤渗透特性影响的试验研究[J]. 岩石力学与工程学报, 2012, 31(6): 1222-1229. DOI: 10.3969/j.issn.1000-6915.2012.06.018

    HU X, LIANG W, HOU S J, et al. Experimental Study of Influence of Temperature and Stress on Permeability of Raw Coal and Briquette[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1222-1229. (in Chinese) DOI: 10.3969/j.issn.1000-6915.2012.06.018
    [9]
    SAVAGE D. The scientific and regulatory basis for the geological disposal of radioactive waste[M]. Chichester: John Wiley and Sons, 1995.
    [10]
    陈卫忠, 龚哲, 于洪丹, 等. 黏土岩温度-渗流-应力耦合特性试验与本构模型研究进展[J]. 岩土力学, 2015, 36(5): 1217-1238.

    CHEN W Z, GONG Z, YU H D, et al. Review of Thermo-hydro-mechanical Coupled Tests and Constitutive Models of Clays[J]. Rock and Soil Mechanics, 2015, 36(5): 1217-1238. (in Chinese)
    [11]
    龚哲. Boom clay温度-渗流-应力耦合长期力学特性研究[D]. 北京: 中国科学院大学, 2015.

    GONG Z. Study on Long Term Mechanical Properties of Temperature, Seepage and Stress Coupling of Boom clay[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [12]
    张流, 薛丽霞, 施良骐, 等. 高围压下岩石破坏和摩擦滑动过程中的声发射性活动性[J]. 岩石力学与工程学报, 1990, 9(1): 38-47.

    ZHANG L, XUE L X, SHI L Q, et al. Acoustic Emission Response of Rock During Fracture and Friction at Hight Confining Pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 1990, 9(1): 38-47. (in Chinese)
    [13]
    杨永杰, 王德超, 郭明福, 等. 基于三轴压缩声发射试验的岩石损伤特征研究[J]. 岩石力学与工程学报, 2014, 33(1): 98-104.

    YANG Y J, WANG D C, GUO M F, et al. Study of Rock Damage Characteristics Based on Acoustic Emission Tests under Triaxial Compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 98-104. (in Chinese)
  • Related Articles

    [1]LI Xiulei, XIE Fei, CHEN Chen, HUANG Feng, LING Tianqing. Investigation of crack propagation behavior of opening single fractured rock based on acoustic emission technology[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 90-101. DOI: 10.16030/j.cnki.issn.1000-3665.202303044
    [2]LIU Hongyan, ZHANG Guangxiong, ZOU Zongshan, HE Tiezhu. A uniaxial compression damage model for rockmass considering the crack deformation parameter[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 85-92. DOI: 10.16030/j.cnki.issn.1000-3665.202208017
    [3]LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. DOI: 10.16030/j.cnki.issn.1000-3665.202104002
    [4]LIU Wenbo, SUN Boyi, CHEN Lei, ZHANG Shuguang. A statistical damage constitutive rock model based on elastic energy release rate[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 88-95. DOI: 10.16030/j.cnki.issn.1000-3665.201910051
    [5]LIU Xikang, XU Jinming. A study of damage evolutions of granites by using relative entropy[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 105-111. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.14
    [6]LI Xiulei, LI Qiwei, LI Qian. A study of the creep model of rock considering fractures and thermal damage[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 46-56. DOI: 10.16030/j.cnki.issn.1000-3665.2019.06.07
    [7]JIA Yi, WEI Liangshuai, HUANG Anbang, HE Ming, HUANG Xichao, LAN Kangwen. A study of the statistical damage constitutive model of rock in high stress areas[J]. Hydrogeology & Engineering Geology, 2019, 46(2): 118-124. DOI: 10.16030/j.cnki.issn.1000-3665.2019.02.16
    [8]FUXiaofeng. A study of the acoustic emission and fractal damage of sandstone under the coupling of seepage and stress[J]. Hydrogeology & Engineering Geology, 2017, 44(6): 83-83.
    [9]HUANGHaifeng, . Nonlinear creep damage model of soft rock and its experimental study[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 49-54.
    [10]CAOWengui, . A statistical damage constitutive model of rocks considering the variation of the elastic modulus[J]. Hydrogeology & Engineering Geology, 2017, 44(3): 42-48.
  • Cited by

    Periodical cited type(11)

    1. 王学静,郭祎钒,于胜超,汪迁迁,李海龙,郑春苗. 砂质海岸地下水营养盐迁移转化过程与入海排泄. 水文地质工程地质. 2025(01): 12-22 . 本站查看
    2. 杨林,陈波,于洪军,苏乔. 基于连续高密度电阻率测量判断海水入侵影响范围的实验研究. 海洋环境科学. 2025(02): 266-275 .
    3. 周宇. 锦州市海水入侵现状及成因分析. 陕西水利. 2024(03): 104-107 .
    4. 赵新锋,叶珊,刘凯,何志东,俞烜. 人工沙滩对海水入侵影响评价的数值模拟研究. 环境监测管理与技术. 2023(03): 71-75 .
    5. 王宗志,王宇,王坤,白莹. 滨海地下水库建设与利用方式对含水层水盐运移规律的影响. 水资源保护. 2023(04): 69-78 .
    6. 王佳琪,郭芷琳,田勇,范林峰,曾文科,王晓丽,苏皝,Michele Lancia,郑春苗. 海水入侵模拟方法VFT3D及应用. 水文地质工程地质. 2022(02): 184-194 . 本站查看
    7. 孙建宏,程立群,赵伟锋,任改娟,孙冠石,王瑞鹏,裴明星. 海水入侵区视电阻率与氯离子浓度关系研究——以秦皇岛地区为例. 物探与化探. 2022(02): 518-524 .
    8. 于建丛,张永泽,黄文龙. 测井在水文地质钻探中划分咸淡水分界面的应用. 地质装备. 2022(02): 21-24+32 .
    9. 吕盼盼,宋健,吴剑锋,吴吉春. 水力屏障和截渗墙在海水入侵防治中的数值模拟研究. 水文地质工程地质. 2021(04): 32-40 . 本站查看
    10. 赵洁,林锦,吴剑锋,吴吉春. 未来气候变化对大连周水子地区海水入侵程度的影响预测. 水文地质工程地质. 2020(03): 17-24 . 本站查看
    11. 李选彧. 未来气候变化对丹东市海水入侵程度的影响预测. 黑龙江水利科技. 2020(10): 59-64 .

    Other cited types(5)

Catalog

    Article views (916) PDF downloads (517) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return